What do we know about the immune system of meagre and amberjack?

RESEARCH CENTRE

Project aims Meagre (*Argyrosomus regius*)

1) Gene discovery

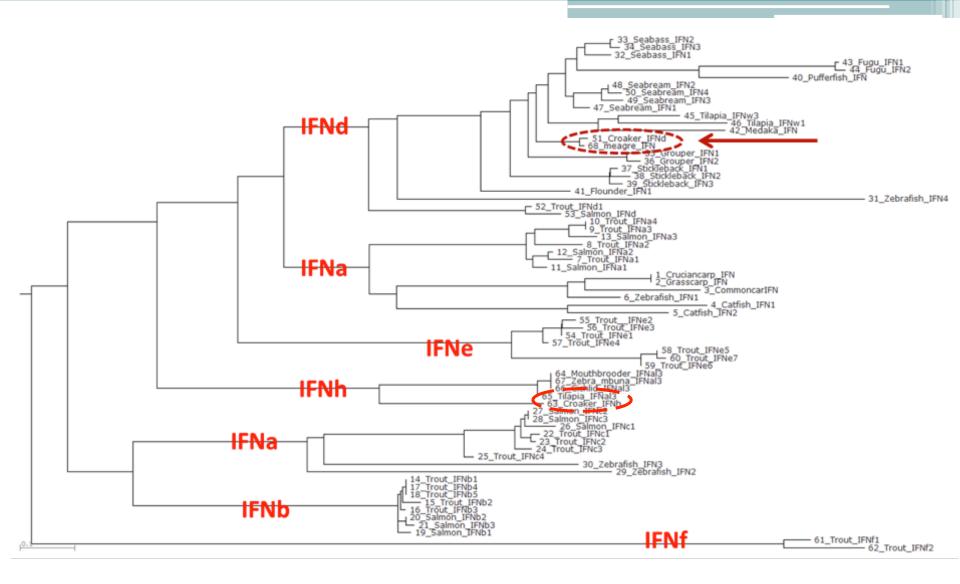
Develop tools for monitoring gene expression of Key immune molecules 2) Antibody development

Develop antibodies against IgM and IgT

3) Tissue stimulation Identify methods of inducing and monitoring

immune gene expression

4) Ontogeny study

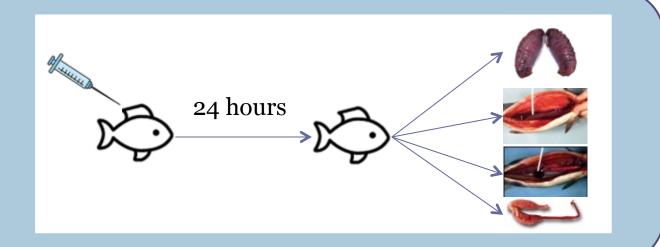

Use the designed tools to interrogate the development of the immune system from juveniles to adult fish 5) Vaccine challenge

Monitor the immune response to potential pathogens such as *Vibrio anguillarum* (vaccine provided by IRTA)

Meagre: Gene Discovery

Adaptive Immune Genes (Aberdeen)					
	IL-1B	ANTI- MICROBIAL PEPTIDES	β – DEFENCIN		
CYTOKINES	IL-4/13		HEPCIDIN		
	IL-10		PISCIDIN		
	IL17AF	OSTEOCLAST / OSTEOBLAST	CATHESPIN K		
	IL-22		V-ATPASE		
	TNFa2		TRAP		
	IFN1	HOUSEKEEPING	EF1α		
	IFN γ		β-ΑCTIN		
IMMUNOGLOBULIN RELATED	IgM	GENES	HPRT		
	IgD				
	IgT				
	RAG1	Total of	33 genes !		
	TCRB				

Innate Immune gene (IRTA)				
	Met			
	Lysozyme			
ACTIVE DEFENCE	C3			
PROTIENS	Mx			
	TNFa1			
	NOD2			
RECEPTERS AND	NOD3			
SGNALING MOLECULES	COX2			
	MYD88			
	ΕF1α			
HOUSEKEEPING	GADPH			
GENES	18s			

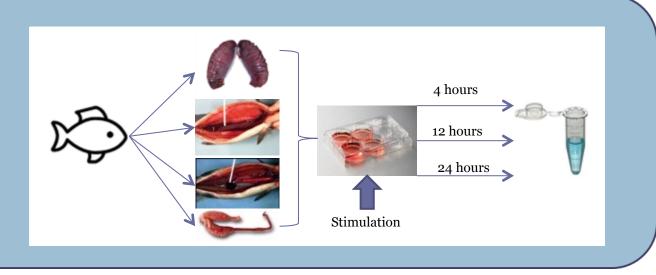


Meagre Tissue Stimulation Setup

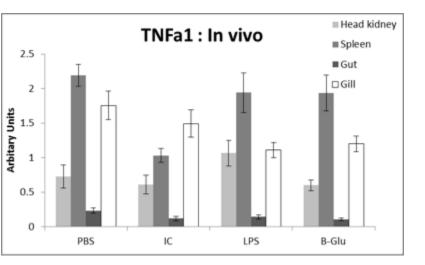
In Vivo

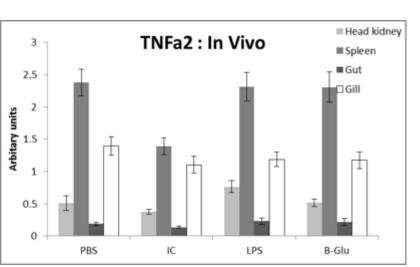
Ip Injection of fish

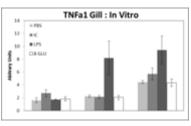
- PBS
- Poly I:C
- LPS
- β Glucan

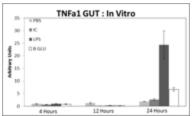


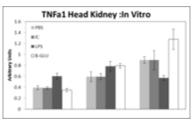
In Vitro

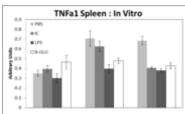

Primary cell culture stimulated by:

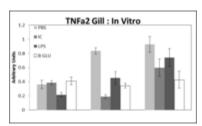

- PBS
- Poly I:C
- LPS
- β Glucan

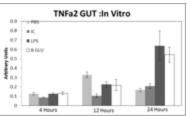

Samples taken after 4, 12 and 24 hours

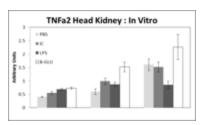


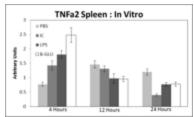

Meagre Tissue Stimulation Results

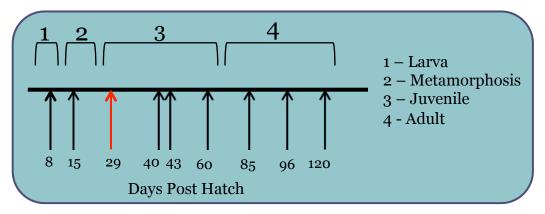


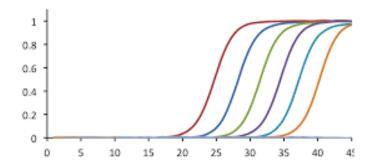


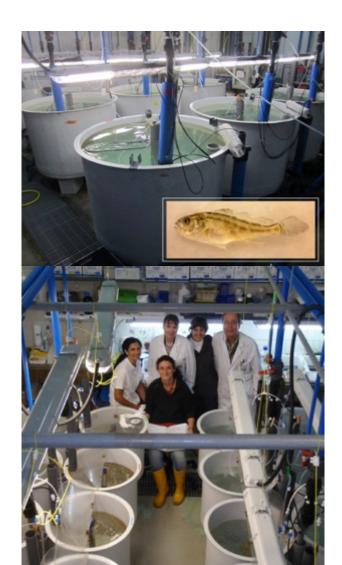


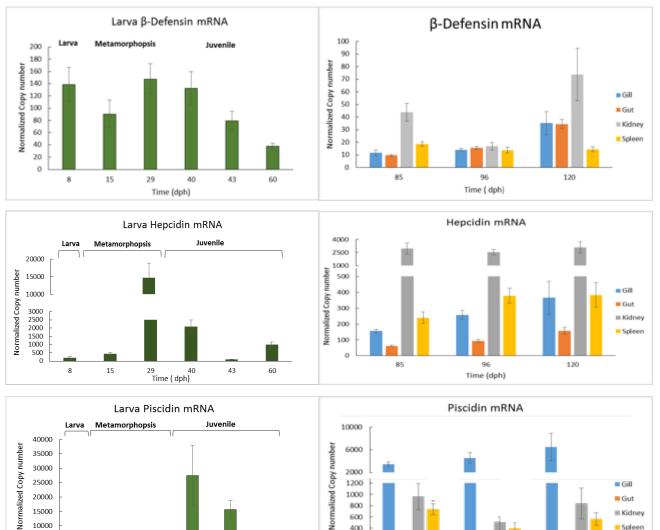






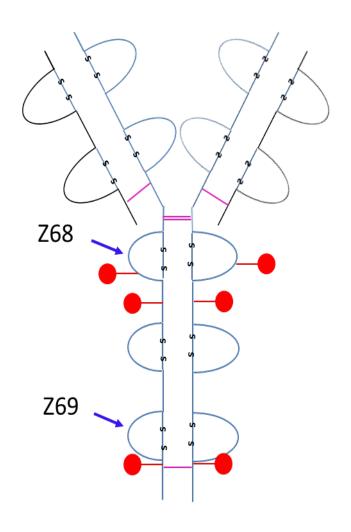

Meagre Ontogeny study


1) Collect meagre samples from IRTA

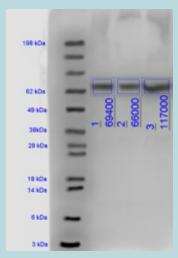

2) RNA extraction form whole larva (8-60 dph) and immune tissues (85-120 dph) followed by CDNA synthesis

3) Perform QPCR

Meagre ontogeny results: AMPs

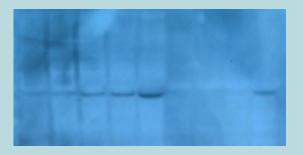

Time (dph)

Normalized Copy number ■ Gill Gut ■ Kidney Spleen Time (dph)


** Graphs provided by Cindy Campoverde

Peptide needs to be:

- Immunogenic
- Hydrophilic
- Accessible
- Unique to Target


Meagre Anti IgM (Z69)

Lane 1 Ladder Lane 2 Serum 1:30 Lane 3 Serum 1:15 Lane 4 serum 1:10 Meagre Anti IgM (Z69) and Anti IgT (Z55)

Lane 1 serum 1:15 anti IgM Lane 2 serum 1:15 anti IgT Meagre anti IgT (Z55) Multiple species

Lane 1 serum 1:30 Meagre

Lane 2 serum 1:30 Lumpfish

Lane 3 serum 1:30 seabream

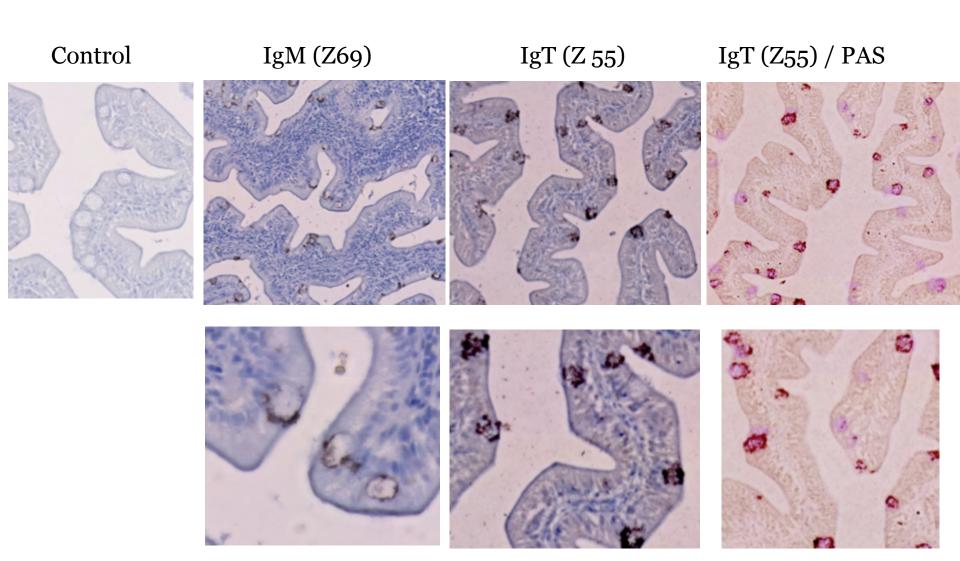
Lane 4 serum 1:15 seabream

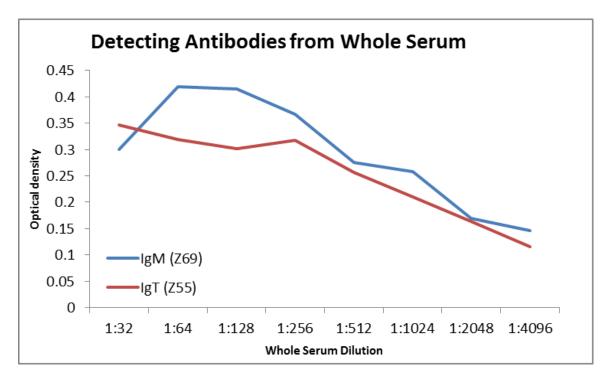
Lane 5 serum 1:10 seabream

Lane 6 serum 1:30 Large Yellow Croaker

Lane 6 serum 1:15 Large Yellow Croaker

Lane 6 serum 1:10 Large Yellow Croaker


Lane 6 serum 1:5 Large Yellow Croaker


Meagre anti IgM (Z69) Multiple species

Lane 1 ladder Lane 2 serum 1:5 meagre Lane 3 serum 1:5 lumpfish

Control IgM (Z69) IgT (Z55) **Head Kidney** Spleen

- Whole Serum used was from naive meagre
- Able to detect IgM and IGT from whole serum when whole serum is diluted 1:16 1:512

Project aims Greater amberjack (Seriloa dumerili)

1) Gene discovery

Develop tools for monitoring gene expression key genes in MUCOSAL immunity

2) Tissue stimulation

Identify methods of inducing mucosal immune gene expression with an emphasis on the gills as a model of mucosal immunity

3) Diet and immunity

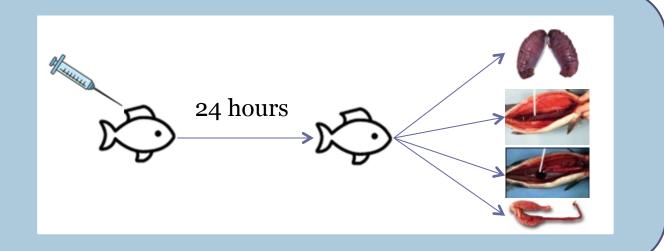
Monitor the impact of dietary regimes on immune gene expression

4) Mucus immune molecules

Characterise the key molecules in mucus defences

Gene Discovery

Amberjack genes Discovered					
Cytokines	IL1B	Immunoglobulin	RAG2		
	IL8	Related	IgM		
	IL10		IgT		
	IL17AF		Mx		
	IL17D	Anti viral	INOS		
	IL22		IFN1		
	TNFa		IFNγ		
Anti – microbial Peptides	β-DEFENCIN	Housekeeping	EF1a		
	HEPCIDIN	genes	β-ACTIN		
	PISCIDIN				

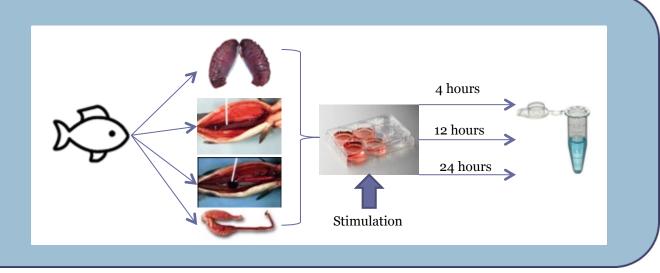

19 Genes Discovered!

Amberjack Tissue Stimulation Setup

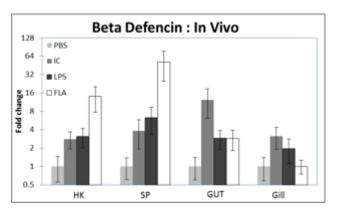
In Vivo

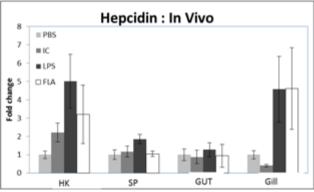
Ip Injection of fish

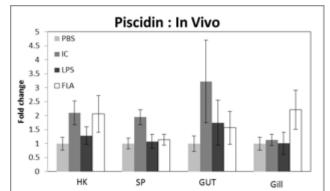
- PBS
- Poly I:C
- LPS
- Flagellin

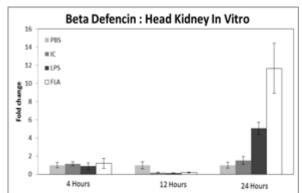


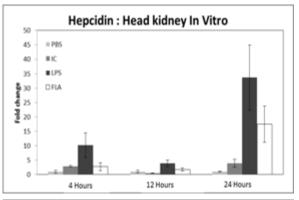
In Vitro

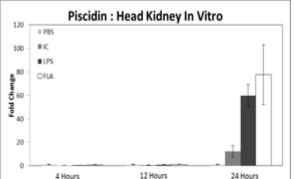

Primary cell culture stimulated by:

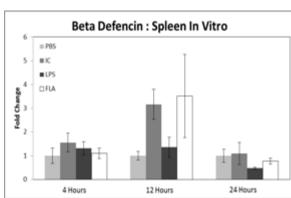

- PBS
- Poly I:C
- LPS
- Flagellin

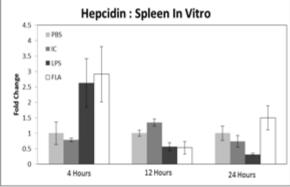

Samples taken after 4, 12 and 24 hours

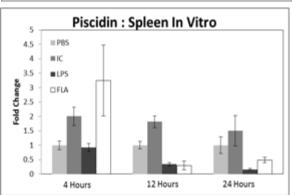



Amberjack Tissue Stimulation Results









Amberjack AMPS

β – Defencin

Length: 42

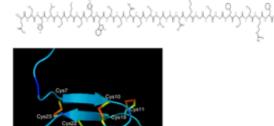
Mass: 4492.1456
Isoelectric point (pI): 8.00

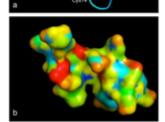
Net charge: +2

Hvdrophobicity: +11.12 Kcal *mol -1
Extinction coefficient¹: 5875 M¹ *cm -1
Extinction coefficient²: 5500 M¹ *cm -1

ઌૡ૽ૡૢૡૢ૽ૡૡૻૡઌ૽ૼઌૣઌૣઌ૽ૡઌૢૻૡ૿૽ૢઌઌ૽ઌ૽ઌૼઌૺઌ૿ૡ૽ૡૻૡ૿૽ૡ૽

Hepcidin


Length: 26


<u>Mass</u>: 2941.0712

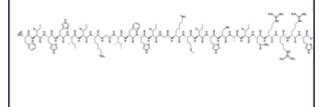
Isoelectric point (pI): 7.83
Net charge: +2

Hydrophobicity: +16.02 Kcal * mol -1

Extinction coefficient¹: 6000 M⁻¹ * cm⁻¹ Extinction coefficient²: 5500 M⁻¹ * cm⁻¹

Piscidin

Length: 25

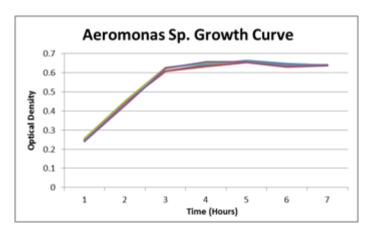

<u>Mass</u>: 3030.7145

Isoelectric point (pI): 12.79

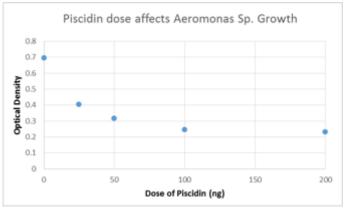
Net charge: +5

Hydrophobicity: +22.76 Kcal * mol -1

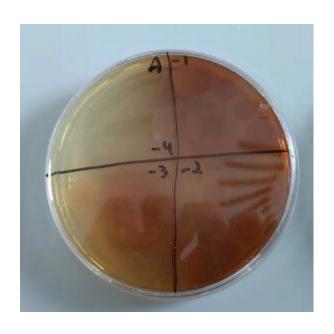
Extinction coefficient¹: 0 M⁻¹ * cm⁻¹ Extinction coefficient²: 0 M⁻¹ * cm⁻¹



Amberjack AMPS Current work


1) Synthesise Amberjack Piscidin active peptide

2) Determine bacterial exponential growth phase




3) Determine the efficacy of active peptide by subjecting bacteria to a dose gradient (MIC =12.5 ng/ml)

Amberjack AMPS Current work

4) Test Bacterial cell viability after Piscidin interaction

Future work

Meagre

Vaccine Trial (IRTA)

Short term effects

Measure gene expression using QPCR (current work)

(long term effects)

- Measure specific antibody response, serum and mucus (current work) Anti microbial Peptides
- Measure Gene expression using QPCR

Antibodies

- Develop a 2nd anti IgT Mab and 2nd anti IgM Mab and potentially anti IgD Mab (current work)
- In situ hybridisation to determine Source of antibodies in the gut (current work)

Gene discovery

Discover sequence for all type 1 interferons IFNa, IFNd and IFNh (current work)

<u>Amberjack</u>

Diet Trial (FCPCT)

Using QPCR determine the effect of diet on the immune response of amberjack

Continue to screen bacterial and other pathogenic species to determine the efficacy of Piscidin (current work)

Acknowledgements

Dr Ayham Alnabulsi

Dr Karl Andree

Cindy Campoverde (PhD Student)

Dr Daniel Montero

Dr Felix Acosta

Dr Pantelis Katharios

Acknowledgements

SCOTTISH FISH IMMUNOLOGY RESEARCH CENTRE

Laura Mollon M.Sc.

Dr Dawn Shewring

Dr Jason Holland

Dr Jun Zou (Supervisor)

Prof Chris Secombes (supervisor)

Questions?