Effects of husbandry practices and environmental factors on pikeperch growth, immune and physiological status

Patrick Kestemont¹, Sebastien Baekelandt¹, Robert Mandiki¹, Baptiste Redivo¹

Yannick Ledoré² & Pascal Fontaine²

Jiri Bossuyt³

¹ Research Unit in Environmental and Evolutionary Biology, University of Namur, Belgium
² Research Unit in Animals and Animal Products Features, University of Lorraine, France
³ Fish2Be, Belgium

Context

- Pikerperch is a valuable candidate for diversification of inland aquaculture in European countries
- But its development is still limited by sudden and unpredictable mortalities

Among the main bottlenecks:

- High stress responsiveness
- Frequent grading manipulations to reduce growth depensation and cannibalism behaviour
- Absence of standardized rearing conditions
- Low level of domestication

- Stress is unavoidable in aquaculture production systems
- Stress induces physiological, endocrine and immunological responses to maintain homeostasis

Nardocci et al, 2014

Stress... in pikeperch

	Basal cortisol levels (ng/ml)	Cortisol levels 1-hour after an acute stress
Pikeperch & walleye	± 30 ng/ml	±230 ng/ml
Coho salmon	< 25 ng/ml	±175 ng/ml
Rainbow trout	< 25 ng/ml	± 40 ng/ml

- Highly responsive/sensitive to environmental changes: advantage or constraint in aquaculture?
- Specialized retina with a *tapetum lucidum*, a light-reflecting layer increasing the eye sensitivity: effects of unsuitable light characteristics?

Dubielzig D. (UW-Madison)

Objectives of the WP 22 Growth & husbandry – pikeperch

- WP22.1 Effects of husbandry practices and environmental factors on pikeperch growth, immune and physiological status
- WP22.2 Characterization of pikeperch growth, immune and physiological status in farm conditions
- WP22.3 Effects of pikeperch domestication level and geographical origin on growth and stress sensitivity

WP22.1

Effects of husbandry practices and environmental factors on pikeperch growth, immune and physiological status

Materials & Methods

Eight factors considered as relevant for the welfare of pikeperch

Factors	Modality	References		
Photoperiod	10 L : 14 D	Pourhosein Sarameh et al., 2012		
	24 L : 0 D	Teletchea et al., 2009		
Light intensity	10 lux			
	100 lux	Luchiari et al., 2006		
	White			
Light spectrum	Red	Luchiari et al., 2009		
Rearing density	15kg/m ³			
	30kg/m ³	Steenfeldt et al., (2010) in Dalsgaard et al., 2013		
_	21 °C	Dalsgaard et al., 2013		
Temperature	26 °C	Wang et al., 2009		
Oxygen saturation	60 %			
	90 %	Dalsgaard et al., 2013		
Alimentation	Semi-floating			
	Sinking	Steenfeldt et al., (2010) in Dalsgaard et al., 2013		
Handling	Yes			
	No	Arlinghaus, 2007		

Factorial fractional design

Experimental unit = tank 8 factors * 2 modalities/factors \downarrow 2⁸ = 256 combinations Using factorial fractional design 16 different combinations

Screening approach

Organisation of the fractional factorial design

Tank	Light intensity	Stocking density	Light spectrum	Photoperiod	Water temperature	Feed type	Grading	Oxygen saturation
1	10	15	white	24	21	sinking	Y	90
2	TOO		Red	10	26	floating	Ν	60
3	100	15	b :to	24	21	sinking	Ν	60
4	400	4 5	Red	10	21	sinking	Ν	90
5	10	15	Rod	10	21	sinking	Υ	60
6	10	15	wille	10	21	floating	Ν	90
7	100	15	Red	24	21	floating	Y	90
8	10	15	winte	24	26	floating	Y	60
9	100	15	white	10	26	sinking	Υ	90
10	100	13	white	10	21	floating	Υ	60
11	100	30		24	26	floating	Ν	90
12	10	30	Red	10	26	floating	Y	90
13		30	Red	24	26	sinking	Y	60
14	10	30	Red	24	21	floating	Ν	60
15	10	20	white	10	26	sinking	Ν	60
16	10	15	Red	24	26	sinking	Ν	90

Experimental facilities

Ecotron with white spectrum (UL)

Ecotron with red spectrum (UL)

Experimental design and analyses

• Relative Growth Rate (%)

• Mortality rate (%)

• Plasma cortisol (ng/ml)

High plasma cortisol levels due to white light, long photoperiod and high stocking density

• Plasma glucose (µg/ml)

- High glucose levels when high light intensity associated with high temperature
- Higher activity related to higher stress level

Ecotron	Biomass gain (g)	RGR (%)	GMR (%)		
1	7238	81	4,32		
2	2888	56,9	2,86		
3	3059	84,9	12,86		
4	17	53,7	30,94		
5	5 1494		7,14		
6	6 -609		7,14		
7	7 -1210		24,29		
8 1996		57,4	10		
9	3216	102,8	12,86		
10	10 -2056		41,01		
11	1770	63,4	17,99		
12	-1764	22,8	23,74		
13	13 1534		31,65		
14	3007	26,5	4,32		
15	9042	80	2,88		
16	3511	81,9	7,14		

3 combinations look promising for pikeperch aquaculture

- High biomass gain
- > High growth
- > Low mortality

Tested in a confirmation experiment

Confirmation experiment

Objective: determining the disease resistance after bacterial exposure following exposure to selected conditions

Tank	Light intensity	Density	Light spectrum	Photoperiod	Water temperature	Type feed	Grading	Oxygen saturation
16	10	15	Red	24	26	sinking	Ν	90
15	10	30	White	10	26	sinking	Ν	60
1	10	30	White	24	21	sinking	Y	90

- 3 replicates per condition
- 3 separated recirculating aquaculture systems
- Duration = 36 days
- Bacteria challenge, Aeromonas salmonicida Achromogen: 10⁷ CFU/100g fish
- Mortality during 10 days after bacteria injection

Physiological status

Modalities of combination 16 with **red spectrum** were the most protective indicating a higher disease resistance

LT50 (Lethal Time) (days)

Mortality after bacterial challenge

Conclusions of WP22.1

- Light characteristics and, to a lesser extent, temperature and density are directive environmental factors for pikeperch welfare
- Low light intensity and red light spectrum seem less stressful since stress markers (cortisol, glucose, brain neurotransmitters) tended to decrease
- The optimal environmental and husbandry factor-modalities defined need more validation under experimental and commercial aquaculture conditions

Validation of optimal rearing variables under commercial farm conditions

Objectives of WP22.2

- To validate in commercial farm conditions identified as optimal for pikeperch rearing (WP 22.1) by assessing growth related parameters and physio-immunological status of pikeperch at different developmental stages (from 10 g to 500 g)
- To determine the stress sensitivity of fish reared under red or white light spectrum to grading manipulations

Material & Methods

Facilities and Fish

- Production of 8100 juveniles up to 11g in Fish2Be facilities
- Distribution of fish into 6 tanks (vol. 2000 L) in a RAS

Rearing conditions

- Based on WP 22.1 results:
 - Temperature: 21°C
 - Light intensity: 10 Lux Light spectrum: white vs Red Photoperiod: 12L-12D
- Three 800L-tanks/group
- Size grading on days 49 and 83 to reduce size heterogeneity

Analytical endpoints

- Growth (SGR) and weight heterogeneity
- Stress indicators (cortisol, glucose)
- Immune indicators (lysozyme and peroxidase activities)

Facilities at Fish2Be – size grading

23/36

Conclusions of WP22.2

- Significant effects of size grading on stress markers
- No significant effects of light spectrum under low light intensity
 - Similar growth performance
 - Similar levels of cortisol and glucose before and after size grading
- Differential effects of light spectrum on immune markers
 - Red light enhanced lysozyme activity
 - White light enhanced peroxidase activity
- What are the consequences of light spectrum on immune competence of pikeperch?

WP22.3

Effects of domestication level and geographical origin on stress, immune response and growth performances

Materials & Methods

Fish

- Two European wild populations: Western Europe (Lindre, France) vs Central Europe (Czech Republic)
- Two domestication levels : F0 vs F4

Facilities

- Transfert to UL facilities at the larval stage
- Larval rearing under same conditions
- Three 800L-tanks/group
- 5 kg/m³ initial biomass

Stressor and biomarkers

- Net chasing stress during 30 s
- Stress indicators (cortisol, glucose)
- Immune indicators (lysozyme and peroxidase activities)

29/36

Facilities at University of Lorraine

Conclusions of WP22.3

- Influence of strain on stress responsiveness and immune response
 - No differences between wild French and Czech strains
 - Similar basal levels, similar acute responses after net chasing
- Influence of domestication level on stress responsiveness and immune response
 - No significant differences of basal levels between F0 and F4 Czech strains
 - Increased stress response in F4 strain after net chasing
 - Increased level of bactericidal immune activities in F4 strain
- These preliminary results suggest that domestication is likely to stimulate the stress axis, inducing a higher immune competence

Thanks for your attention

www.unamur.be

More info...

Patrick Kestemont · Konrad Dabrowski Robert C. Summerfelt Editors

Biology and Culture of Percid Fishes

Principles and Practices

