

# GWP Reproduction and Genetics WP2-7



Presenter: Neil Duncan, IRTA

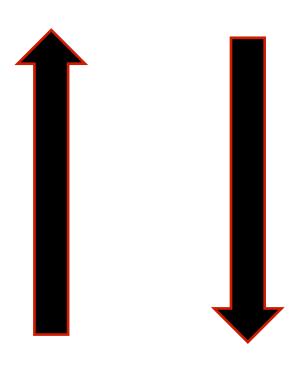
1<sup>st</sup> year project meeting 4-6 November 2014 Bari, Italy



#### **BOTTLENECKS**

Increasing importance of reproduction

Pikeperch (Sander lucioperca)


Meagre (Argyrosomus regius)

Atlantic halibut (*Hippoglossus* hippoglossus)

Greater amberjack (Seriola dumerili)

Wreckfish, (Polyprion americanus)

Grey mullet (Mugil cephalus)



Increasing importance of genetics













#### **Bottlenecks**

Lack of knowledge of the genetic variability of current broodstocks and variable or unpredictable growth rate during grow-out.











## **Objectives**

- 1. Evaluate the genetic variability of captive broodstock in commercial RAS farms in Europe,
- 2. Compare this variability with the variability of wild individuals and define how a future genetic breeding program should be established for sustainable optimal performances through domestication of pikeperch

**HCMR**, UL WP4 PM5 20,000€

|          | Year 1 (2014) |    |    | 14) | Ye | ar 2 | (20 | 15) | Ye | ar 3 | (20) | 16) | Ye | ar 4 | (20) | l7) | Ye | ar 5 | (20] | 18) |
|----------|---------------|----|----|-----|----|------|-----|-----|----|------|------|-----|----|------|------|-----|----|------|------|-----|
|          | Ma            | Ju | Se | De  | Ma | Ju   | Se  | De  | Ma | Ju   | Se   | De  | Ma | Ju   | Se   | De  | Ma | Ju   | Se   | De  |
| Task 4.1 |               |    |    |     |    |      |     |     |    |      |      |     |    |      |      |     |    |      |      |     |
| Task 4.2 |               |    |    |     |    |      |     |     |    |      |      |     |    |      |      |     |    |      |      |     |
|          |               |    |    |     |    |      |     |     |    |      |      |     |    |      |      |     |    |      |      |     |

# Over 1000 samples collected so far

|    | Collection                                        | Wild / Domesticated | Sample Size |
|----|---------------------------------------------------|---------------------|-------------|
| 1  | Szabolsi, Halaszati Kft, Hungary                  | domesticated        | 50          |
| 2  | Aquapri A/S, Danemark (VanMecklen, Holland)       | domesticated        | 55          |
| 3  | Aquapri A/S, Danemark (Czech Rep.)                | domesticated        | 40          |
| 4  | Aquapri A/S, Danemark (Excellence fish, Holland)  | domesticated        | 14          |
| 5  | Aquapri A/S, Danemark (Hungary)                   | domesticated        | 150         |
| 6  | Aquapri A/S, Danemark (Mosso)                     | domesticated        | 20          |
| 7  | IfB, Potsdam, Germany                             | domesticated        | 50          |
| 8  | FGFRI Kainuu fisheries research station, Finland  | domesticated        | 32          |
| 9  | FGFRI Laukaa Fish Farm, Finland                   | domesticated        | 20          |
| 10 | INAGRO, Belgium (>100 fin-clips of German Origin) | domesticated        | 100         |
| 11 | INAGRO, Belgium (>100 fin-clips of Dutch Origin)  | domesticated        | 100         |
| 12 | ASIALOR, France                                   | domesticated        | 65          |
| 13 | URAFPA-DAC, Czech Rep.                            | wild                | 70          |
| 14 | Domaine de Lindre, France                         | wild                | 51          |
| 15 | Sarag Lake, Poland                                | wild                | 14          |
| 16 | Wymoj Lake, Poland                                | wild                | 9           |
| 17 | Gyori Elore, HTSZ, Hungary                        | wild                | 26          |
| 18 | Gyori Elore, HTSZ, Hungary                        | wild                | 27          |
| 19 | Lake Oulujärvi, Finland                           | wild                | 32          |
| 20 | Lake Hiidenvesi, Finland                          | wild                | 31          |
| 21 | INSTM, Tunisia                                    | wild                | 59          |



#### Microsatellite Cross-species amplifications two multiplexes being used

#### **MULTIPLEX 1 with 4-plex**

|        |            | Repeat   |         |    |      |      |                             |                            |
|--------|------------|----------|---------|----|------|------|-----------------------------|----------------------------|
| Locus  | Acc.Number | Sequence | Range   | Na | Но   | He   | Forward                     | Reverse                    |
| PflaL3 | AF211828   | (TG)18   | 101-119 | 8  | 0.34 | 0.29 | GCCGAATGTGATTGAATG          | CGCTAAAGCCAACTTAATG        |
| SviL8  | AF144741   | (TG)22   | 107-145 | 8  | 0.34 | 0.20 | GCTTATACGTCGTTCTTATG        | ATGGAGAAGCAAGTTGAG         |
| Za138  | HM622317   | (AC)8    | 135-148 | 5  | 0.27 | 0.43 | TTCTTTATACAAGAGGAATAGTTGCAG | TTTTTGTGATTGTGCTATTTTAAAGG |
| Za199  | HM622334   | (TCT)13  | 201-234 | 7  | 0.67 | 0.74 | CCTTCCCCTCAAAAGCATGT        | AGGAAATGGAAAGGGAATGC       |

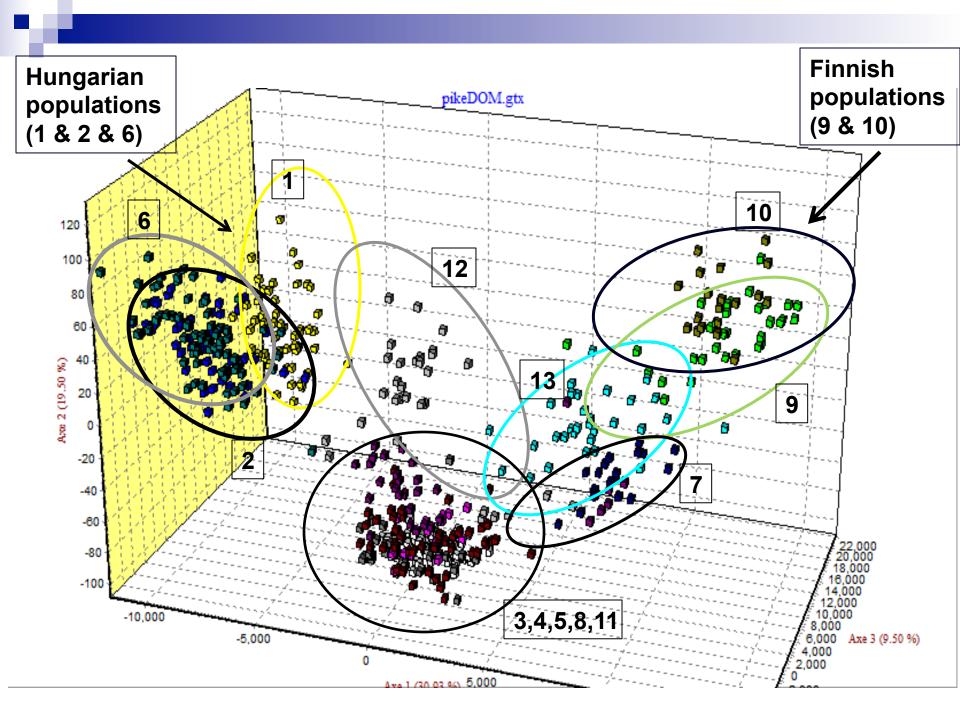
#### **MULTIPLEX 2 with 7 -plex**

|        |            | Repeat   |         |    |      |      |                         |                          |
|--------|------------|----------|---------|----|------|------|-------------------------|--------------------------|
| Locus  | Acc.Number | Sequence | Range   | Na | Ht   | Hs   | Forward                 | Reverse                  |
| Za038  | HM622298   | (AC)11   | 107-130 | 6  | 0.80 | 0.77 | TGAATCGCTGCTCTTTCTCA    | TATGCAATTACATCGGAGCG     |
| Svi4   | G36961     | (AC)16   | 120-166 | 15 | 0.70 | 0.65 | ACAAATGCGGGCTGCTGTTC    | GATCGCGGCACAGATGTATTG    |
| Za024  | HM622294   | (AC)7    | 127-139 | 4  | 0.47 | 0.43 | TGAACCTCCCTATCCCCTCT    | TCTTTTCCACAGCAGGAAGC     |
| PflaL9 | AF211834   | (TG)24   | 182-214 | 4  | 0.65 | 0.52 | GTTAGTGTGAAAGAAGCATCTGC | TGGGAAATGTGGTCAGCGGC     |
| Za237  | HM622342   | (CA)10   | 171-178 | 5  | 0.57 | 0.54 | ATCTCAAGTCATGGGGCATC    | GGTCCTCTGGTGCAGCTATAA    |
| Za144  | HM622319   | (AC)8    | 199-228 | 8  | 0.70 | 0.80 | GCCCACAATAGCACCGTAAT    | TTTGTGAATGTGAGTGAGAGTCAG |
| Za207  | HM622337   | (GT)13   | 222-237 | 5  | 0.67 | 0.64 | GGATTCCAGAAGCAAAAGAGG   | TGGGACAAGGCTTTAACCAC     |





# DNA extractions and PCR amplifications


- DNA extractions ~80% completed
- PCR amplifications
  - currently focused on domesticated samples





## Data analysis

- Domesticated stocks, quantify the loss of genetic variability
- Ensure sufficient genetic variation
- Basic population genetics parameters
  - □ allelic richness,
  - heterozygosity indices,
  - inbreeding coefficients
- Compare stocks to improve management
  - genetic selection
  - traceability of products











#### **Bottlenecks**

- Limited genetic variation of current broodstocks
- Variable growth rate in pre-growing phase and grow-out in cages.









## **Objectives**



- 1. Evaluate the genetic variation in the available captive broodstocks of meagre,
- 2. Genetic characterization of fast and slow growers,
- 3. Development of tools that facilitate the implementation of genetic selection programs,
  - a. Develop protocols for the paired crossing of breeders with spontaneous spawning,
  - □ b. Describe sperm quality and cryopreservation techniques,
  - □ c. Develop in vitro fertilization protocols to provide planned genetic crosses,
  - □ d. Develop a set of SNP markers for genetic selection and stock characterisation.











WP2 <u>IRTA</u>, HCMR, FCPCT, IFREMER PM40.65 – 320,656€

|          | Ye | Year 1 (2014) |    |    | Year 2 (2015) |    |    | Year 3 (2016) |            |    |    | Year 4 (2017) |    |    |    | Year 5 (2018) |    |    |           |    |
|----------|----|---------------|----|----|---------------|----|----|---------------|------------|----|----|---------------|----|----|----|---------------|----|----|-----------|----|
|          | Ma | Ju            | Se | De | Ma            | Ju | Se | De            | Ma         | Ju | Se | De            | Ma | Ju | Se | De            | Ma | Ju | Se        | De |
|          | 3  | 6             | 9  | 12 | 15            | 18 | 21 | 24            | <b>2</b> 7 | 30 | 33 | 36            | 39 | 42 | 44 | 48            | 51 | 54 | <b>57</b> | 60 |
| Task 2.1 |    |               |    |    |               |    |    |               |            |    |    |               |    |    |    |               |    |    |           |    |
| Task 2.2 |    |               |    |    |               |    |    |               |            |    |    |               |    |    |    |               |    |    |           |    |
| Task 2.3 |    |               |    |    |               |    |    |               |            |    |    |               |    |    |    |               |    |    |           |    |
| Task 2.4 |    |               |    |    |               |    |    |               |            |    |    |               |    |    |    |               |    |    |           |    |
| Task 2.5 |    |               |    |    |               |    |    |               |            |    |    |               |    |    |    |               |    |    |           |    |



# Task 2.1 Evaluation of the genetic variation in captive meagre broodstocks (led by FCPCT, Juan Manuel Afonso).

| Locus     | Fluorochrome     | Redesigned forward primer sequence $(5' \rightarrow 3')$ | Redesigned reverse primer sequence (5'→3') | C (µM) | Original<br>Reference |
|-----------|------------------|----------------------------------------------------------|--------------------------------------------|--------|-----------------------|
| Meagre-ST | RI               |                                                          |                                            |        |                       |
| Cacmic14  | 5' 6-FAM         | TGTCCTCACTCCTCTTTTTCTTTC                                 | GTTTAAGGCGCATCTCCAGTCTC                    | 0.02   | 1*                    |
| UBA054    | 5' 6-FAM         | CCTTGTGAGAACATTAATTTGGATG                                | GTTTCCAAACCCTGATAGATGGATAGTT               | 0.02   | 2*                    |
| UBA050    | 5' 6-FAM         | GCACAACTGCATCCCTTAGAT                                    | GTTTAGAAGTGAAGACTGCGGACTG                  | 0.05   | 2*                    |
| UBA053    | 5' VIC           | TACTTCCTTCTACCCCTAAGTCTGG                                | GACTTTCCAGTGTAGCTGTCGTTT                   | 0.05   | 2*                    |
| Soc431    | 5' VIC           | GTGGTAGATGAAAACGTATAAAAG<br>GAG                          | GTTTCATATATATAGTGTACAGCTCCAGCTTC           | 0.06   | 2*                    |
| UBA042    | 5' NED           | TTTCTGCCTGACTAGATGTTCTTTC                                | GATTGTTGCTGGTTTTTCCAAT                     | 0.05   | 2*                    |
| UBA853    | 5' NED           | CAATGCTCAAGTTACAGGAAACC                                  | GTTTGCACTCGTTCACCCTCAC                     | 0.02   | 2*                    |
| UBA005    | 5' NED           | CATCAGGATTGGCAACTAGC                                     | GTTTCCTCCAGGTTTATTCTTCATTGAC               | 0.03   | 2*                    |
| Soc405    | 5' PET           | AGCCTTTTGTTTAGTTTCCCTCAT                                 | GGGGTGTAGCAGAACCACAC                       | 0.03   | 2*                    |
| UBA006    | 5' PET           | AGCACACGTAATCACACACAGAT                                  | GTTTCCACTAGTGCAAAACGGTGGT                  | 0.03   | 2*                    |
|           |                  |                                                          |                                            |        |                       |
| Locus     | Fluorochro<br>me | Redesigned forward primer sequence $(5' \rightarrow 3')$ | Redesigned reverse primer sequence (5'→3') | C (µM) | Original<br>Reference |
| Meagre-ST | TRS              |                                                          |                                            |        |                       |
| GCT15     | 5' 6-FAM         | ATCCGGGCGTTACTACAGTC                                     | GTTTCTCCACACAGTGCTTTTCAGA                  | 0.02   | 3*                    |
| GA16      | 5' 6-FAM         | CTACACAGTCTCTCTCACTCACTCG                                | GTTTCTGAAACAGCGCAGCATTG                    | 0.02   | 3*                    |
| GA17      | 5' 6-FAM         | CTAGAGAAATTCATCCAGGGAAGT<br>G                            | GTTTAGAGCAGAGAGTTAGCGGTTGTT                | 0.015  | 3*                    |
| CA13      | 5' VIC           | TTTTCCTTTTTCAGTAGTCTCCTTG                                | GTTTATAAGGAGGACGTGAGTTTGGTAG               | 0.035  | 3*                    |
| GA6       | 5' NED           | GTCTGATGGCGACAGACAGG                                     | GTTTCAGCCCGCTACTTTACCTACAAC                | 0.02   | 3*                    |
| CA3       | 5' NED           | AAGTGGAGGCTCTTACATGAAAAC                                 | GTGACAAATTGCCTTCTGTTTCTAC                  | 0.03   | 3*                    |
| CA14      | 5' NED           | ACTGAGAGTGAAGGTGGGAAACT                                  | GTGAGTGTCTTTGTTTTTACCAACC                  | 0.03   | 3*                    |
| GA2B      | 5' PET           | AAGTGTGGCGTCATTTCCTCT                                    | GTATTGATGGATAGCAAGTGTCAGA                  | 0.05   | 3*                    |



Meagre (*Argyrosomus regius*)

Task 2.1 Evaluation of the genetic variation in captive meagre broodstocks (led by FCPCT, Juan Manuel Afonso).

- 906 samples received
  - □ DNA extractions 100% completed
  - □ PCR amplifications
    - ~80% completed
  - □ PCR readings
    - ~65% completed







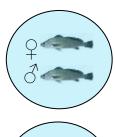


2014 outputs:

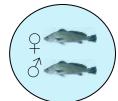
Task 2.1 Evaluation of the genetic variation in captive meagre broodstocks (led by FCPCT, Juan Manuel Afonso).

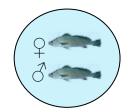
- Quantify the loss of genetic variability
- Ensure sufficient genetic variation
- Basic population genetics parameters
  - allelic richness,
  - heterozygosity indices,
  - inbreeding coefficients
- Compare stocks to improve management
  - genetic selection
  - traceability of products









Task 2.2 Development of protocols for paired crossing in spontaneous spawning

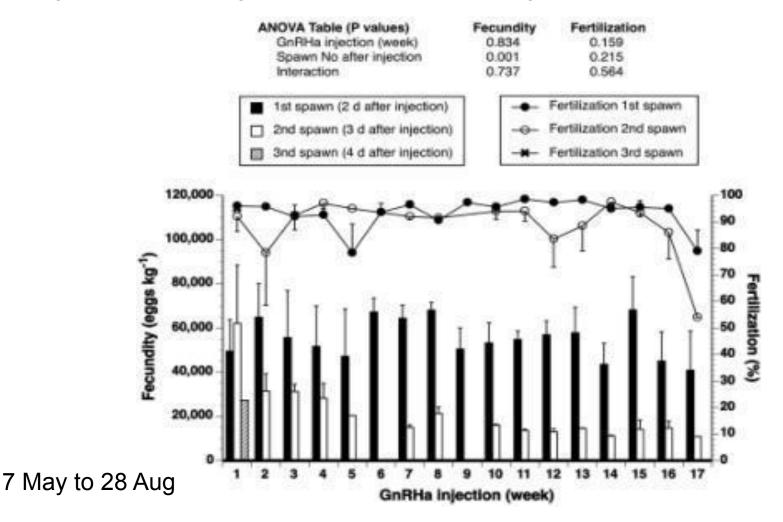
Study in HCMR led by Constantinos (Dinos) Mylonas.











17 weeks, 17 induced spawnings

Females = 15µg/kg GnRHa, oocyte > 0,55 mm Male = GnRHa implant dose 43–57 µg/Kg

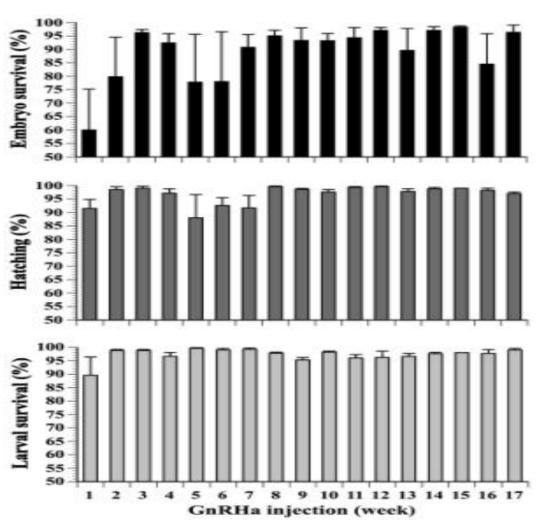


Task 2.2 Development of protocols for paired crossing in spontaneous spawning

Study in HCMR led by Constantinos (Dinos) Mylonas.

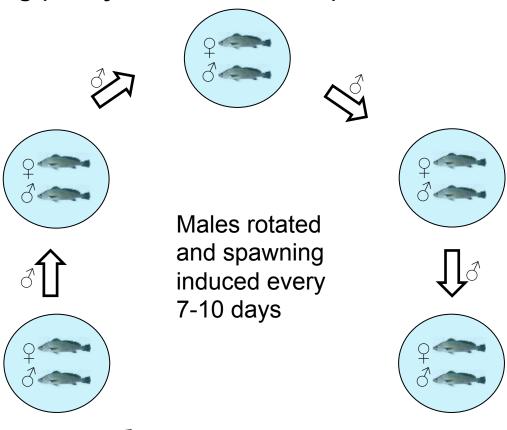




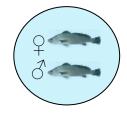








Task 2.2 Development of protocols for paired crossing in spontaneous spawning

Study in HCMR led by Constantinos (Dinos) Mylonas.






Task 2.2 Development of protocols for paired crossing in spontaneous spawning (led by IRTA, Neil Duncan).

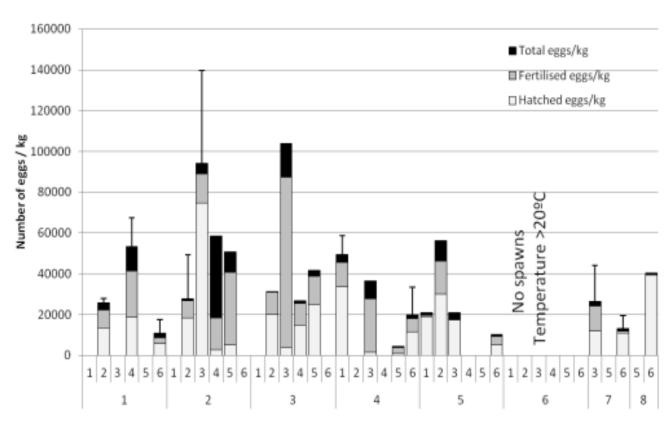








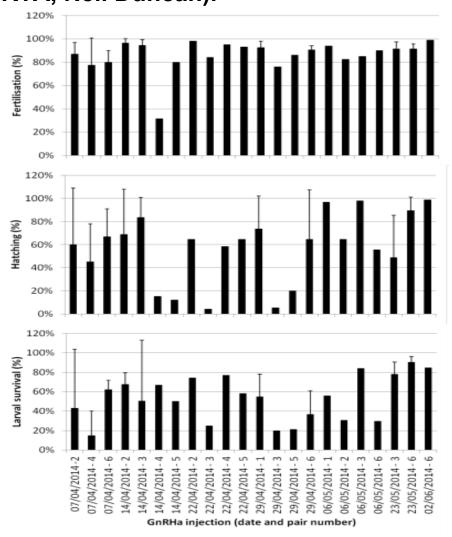
8 inductions Females = 15µg/kg GnRHa, oocyte > 0,55 mm Male = 7,5µg/kg GnRHa,







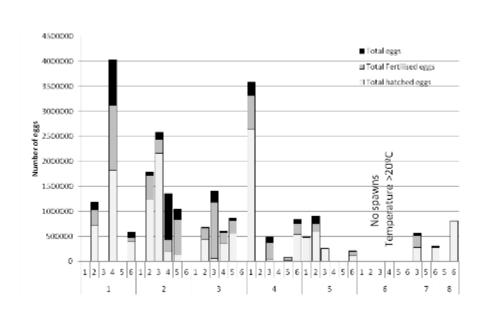

#### **2014 outputs:**


Task 2.2 Development of protocols for paired crossing in spontaneous spawning (led by IRTA, Neil Duncan).



22 (53%) pairs spawned out of a total of 41 pairs that were induced




Task 2.2 Development of protocols for paired crossing in spontaneous spawning (led by IRTA, Neil Duncan).





#### **2014 outputs:**

Task 2.2 Development of protocols for paired crossing in spontaneous spawning (led by IRTA, Neil Duncan).



- No correlation amongst maturity stage and egg quality
- Weak correlation (R=0,5)
   between spawning efficiency
   and temperature
- Individual variation, fish that did not spawn and fish with significantly higher egg quality and quantity



#### 2014 outputs:

Task 2.5 Development of Single Nucleotide Polymorphisms (SNP) marker tools for the genetic characterization of fast and slow growers (led by HCMR, Costas Tsigenopoulos).

| Family | Related half-<br>sib family | Spawning Date<br>(Tank) | Female      | Male    |
|--------|-----------------------------|-------------------------|-------------|---------|
| 1      | 3                           | 24/04/2014 (V8-1)       | 5-wild      | 19-wild |
| 3      | 1                           | 01/05/2014 (V8-2)       | 1-wild      | 19-wild |
| 4      | -                           | 24/04/2014 (C2)         | 16-cultured | 21-wild |
| 5      | -                           | 01/05/2014 (C1)         | 2-wild      | 22-wild |
| 6      | -                           | 01/05/2014 (V6)         | 13-cultured | 17-wild |

- Parents that contributed to each family or half-sib family and spawning date.
- Liver and muscle samples taken from 16 individuals from different families and with different growth rates







2014 outputs:

Task 2.5 Development of Single Nucleotide Polymorphisms (SNP) marker tools for the genetic characterization of fast and slow growers (led by HCMR, Costas Tsigenopoulos).



 Total RNA extraction profile from meagre liver tissues. The size marker on the right side of the gel is the 1Kb DNA ladder RTU from Nippon Genetics GmbH.









## 2014 outputs summary



- Samples collected and analysis close to completion to characterize genetic diversity in current domesticated meagre broodstocks.
- Paired spontaneous tank spawning is possible and can provide a method to produce desired families.
- Samples collected and being analyzed to provide genetic markers for an assisted breeding program (SNP library).









## Atlantic halibut (Hippoglossus hippoglossus)

#### **Bottlenecks**



 Irregular supply of fry particularly from F1/F2 broodstock; long production cycle









## Atlantic halibut (Hippoglossus hippoglossus)

## **Objectivos**



■ 1. Improve fecundity and gamete quality in F1/F2 broodstock.

WP5 <u>IMR</u>, HCMR, NIFES, SWH PM20.5 - 234,701€

|          | Ye | ar 1 | (20) | 14) | Ye | ar 2 | (20 | 15) | Ye        | ar 3 | (20) | 16) | Ye | ar 4 | (20 | 17) | Ye | ar 5 | (20) | 18) |
|----------|----|------|------|-----|----|------|-----|-----|-----------|------|------|-----|----|------|-----|-----|----|------|------|-----|
|          | Ma | Ju   | Se   | De  | Ma | Ju   | Se  | De  | Ma        | Ju   | Se   | De  | Ma | Ju   | Se  | De  | Ma | Ju   | Se   | De  |
|          | 3  | 6    | 9    | 12  | 15 | 18   | 21  | 24  | <b>27</b> | 30   | 33   | 36  | 39 | 42   | 44  | 48  | 51 | 54   | 57   | 60  |
| Task 5.1 |    |      |      |     |    |      |     |     |           |      |      |     |    |      |     |     |    |      |      |     |
| Task 5.2 |    |      |      |     |    |      |     |     |           |      |      |     |    |      |     |     |    |      |      |     |
| Task 5.3 |    |      |      |     |    |      |     |     |           |      |      |     |    |      |     |     |    |      |      |     |
|          |    |      |      |     |    |      |     |     |           |      |      |     |    |      |     |     |    |      |      |     |









## Atlantic halibut (Hippoglossus hippoglossus)

## 2014 outputs summary



- Reproductive performance of wild and F1/F2 documentation.
- GnRHa induced spawning of F1/F2
- Presentation of results by Birgitta Norberg to follow → this talk...









## WP3 Greater amberjack (Seriola dumerili)

#### **Bottlenecks**



Lack of reliable reproduction and of egg availability









## Greater amberjack (Seriola dumerili)

## **Objectives**

- 1. Describe the endocrine control of reproduction in captive broodstocks, and the nutritional status of fish during the reproductive season,
- 2. Assess reproductive potential of wild vs. captive amberjack broodstocks and identify possible reproductive/metabolic dysfunctions during gametogenesis,
- 3. Develop spawning induction methods for wild captive and F1 broodstocks of both the Mediterranean and Atlantic stocks,
- 4.Apply the developed spawning induction methods for broodstocks maintained in cages, and examine the efficiency of an egg collector to obtain fertilized eggs,
- 5. Develop a Computer Assisted Sperm Analysis method (CASA) for the evaluation of greater amberjack sperm during the reproductive season, and evaluate the possible effects of captivity.









## Greater amberjack (Seriola dumerili)



WP3
HCMR, UNIBA, FCPCT, IOLR, IEO, ULL, IFREMER, ARGO, ITICAL
PM148.6 – 751,471€

|          | Ye | ar 1 | (20) | l4) | Ye | ar 2 | (20) | 15) | Ye        | ar 3 | (20) | l6) | Ye | ar 4 | (20) | 17) | Ye | ar 5 | (20)      | 18) |
|----------|----|------|------|-----|----|------|------|-----|-----------|------|------|-----|----|------|------|-----|----|------|-----------|-----|
|          | Ma | Ju   | Se   | De  | Ma | Ju   | Se   | De  | Ma        | Ju   | Se   | De  | Ma | Ju   | Se   | De  | Ma | Ju   | Se        | De  |
|          | 3  | 6    | 9    | 12  | 15 | 18   | 21   | 24  | <b>27</b> | 30   | 33   | 36  | 39 | 42   | 44   | 48  | 51 | 54   | <b>57</b> | 60  |
| Task 3.1 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |           |     |
| Task 3.2 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |           |     |
| Task 3.3 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |           |     |
| Task 3.4 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |           |     |
| Task 3.5 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |           |     |



# Task 3.1 Description of the reproductive cycle of greater amberjack.



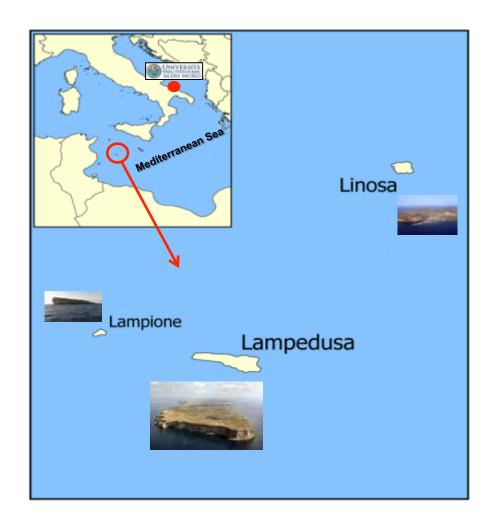
led by UNIBA Aldo Corriero

First Annual Coordination Meeting 4-6 November 2014 Bari, Italy










#### WILD GREATER AMBERJACK SAMPLING (UNIBA)

## SAMPLING AREA: LAMPEDUSA

(Pelagic Islands, Sicily, Italy)

SAMPLING DATES: 31/05/2014 30/06/2014



#### PURSE SEINE FOR GREATER AMBERJACK FISHERY IN LAMPEDUSA















# WILD GREATER AMBERJACK SAMPLES COLLECTED IN MAY AND JUNE 2014



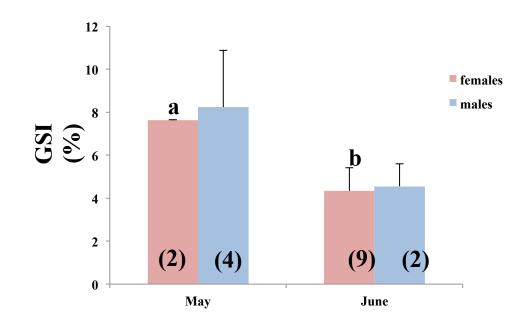




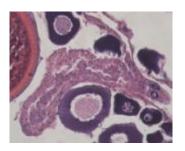




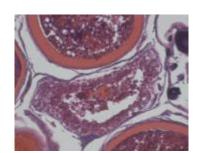




OVARY TESTIS SPERM

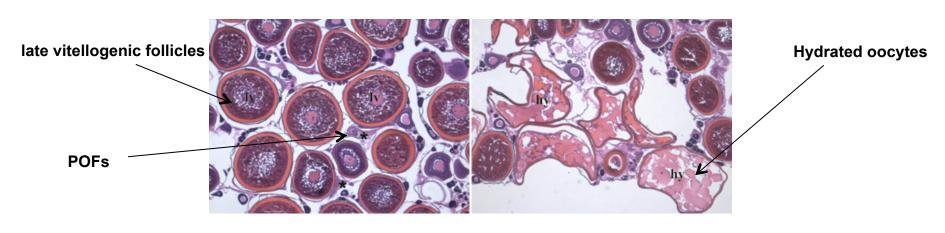
1st DORSAL SPINE


### MEAN FORK LENGHT AND MEAN BODY MASS OF WILD GREATER AMBERJACK SAMPLED IN MAY AND JUNE 2014

| Sampling<br>Date | Sex | Mean Fork Lenght ± sd<br>(FL; cm) | Total Body Mass ± sd<br>(BM; kg) |
|------------------|-----|-----------------------------------|----------------------------------|
| 31/05/2014       | f   | 115.5 ±2.1                        | 21.3±0.4                         |
| 31/05/2014       | m   | 110.0±11.6                        | 17.3±4.3                         |
| 30/06/2014       | f   | 99.0±2.9                          | 12.0±0.8                         |
| 30/00/2014       | m   | 99.5±0.7                          | 10.7±0.3                         |


## MEAN GONADO-SOMATIC INDEX OF WILD GREATER AMBERJACK SAMPLED IN MAY AND JUNE 2014 (ANOVA; P≤0.05)

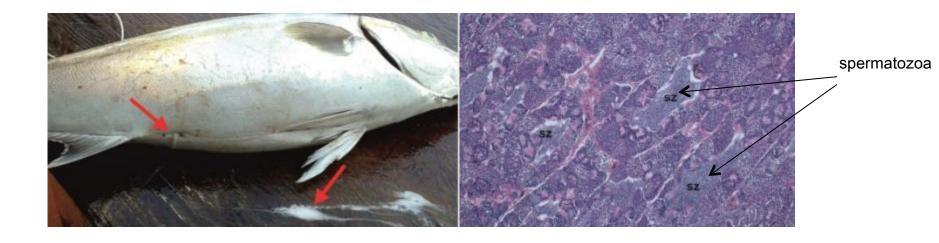



Post- ovulatory follicles (POF)



**Atretic follicles** 

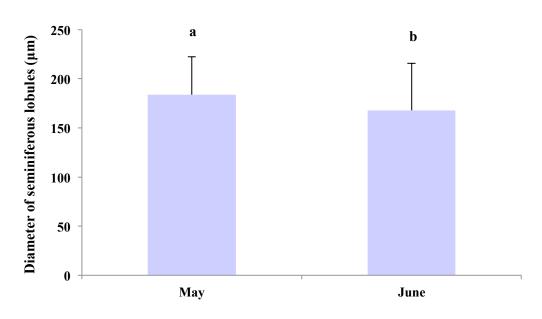



#### WILD FEMALE GREATER AMBERJACK REPRODUCTIVE STATE



2 females in May and 7 in June: MATURE

2 females in June: SPAWNING


#### **WILD MALE GREATER AMBERJACK REPRODUCTIVE STATE**



# 4 males in May : MATURE, RELEASING SPERM

2 males in June:
MATURE, INTRA-TESTICULAR SPERM

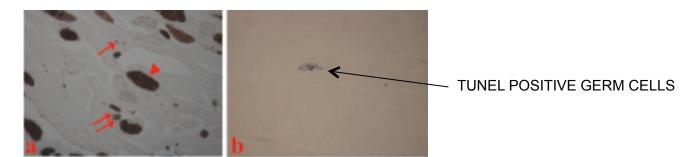
#### MEAN SEMINIFEROUS LOBULE DIAMETER (ANOVA; P≤0.05)



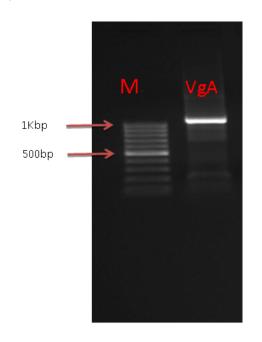
#### PRELIMINARY CONCLUSION

➤ Wild greater amberjack is in spawning condition between the end of May and the end of June, when POF as well as hydrated oocytes were observed in the ovaries.

.....TO BE DONE IN Y2


NEW SAMPLING CAMPAIGNS IN LATE APRIL-EARLY MAY AND, POSSIBLY,

AFTER THE CESSATION OF THE SPAWNING SEASON


#### Male germ cell proliferation and apoptosis - Vitellogenesis

# IDENTIFICATION OF PROLIFERATING (PCNA immunolocalization) AND APOPTOTIC (TUNEL method) GERM CELLS IN WILD MALES

PCNA POSITIVE GERM CELLS



#### ESTABLISHMENT OF QUANTITATIVE PCR ESSAY TO MEASURE TRANSCRIPT LEVELS OF VITELLOGENIN



Vitellogenin A (Vg A) amplification





- GnRHa induced spawning studies
- Presentation of results by Constantinos (Dinos) Mylonas to follow → this talk…

### Greater amberjack (Seriola dumerili)

#### 2014 outputs

Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).



Twenty-two greater amberjack (average weight: females, 3.41 ± 1.12 kg; males, 2.37 ± 1.07 kg), originally captured in the South-western coast of Gran Canaria (Islas Canarias, España) in May 2011



Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).





May 2014, males average weight =  $10.77 \pm 2.33$  kg; females =  $10.72 \pm 1.22$  kg 40m<sup>3</sup> tanks

TA: 53; 29 (mean oocyte diameter =  $837.1 \pm 166.9 \mu m$ ) – Natural spawn

T B: 43; 44 (mean oocyte diameter =  $689.5 \pm 99.8 \mu m$ ) - Injected

T C: 3  $\circlearrowleft$ ; 4  $\circlearrowleft$  (mean oocyte diameter = 648.4  $\pm$  58.5  $\mu$ m) - Implanted





### Greater amberjack (Seriola dumerili)

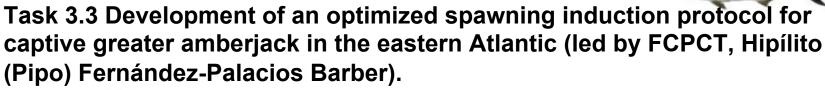
#### 2014 outputs

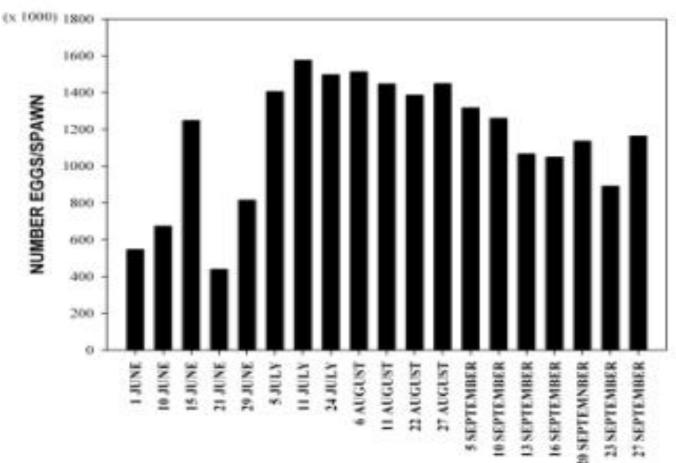
Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).








Injections: 20 µg/kg twice a week (Tuesday and Friday) alternating the broodstock couples (i.e., every 10-11 days). Oocyte > 0,69 mm Implants:  $500\mu g$  GnRHa implants / female ( $\approx 50 \mu g/kg$ ); male  $1/2 500\mu g$  implant ( $\approx 25 \mu g/kg$ ) Re-administered when spawning stopped. Oocyte > 0,65 mm

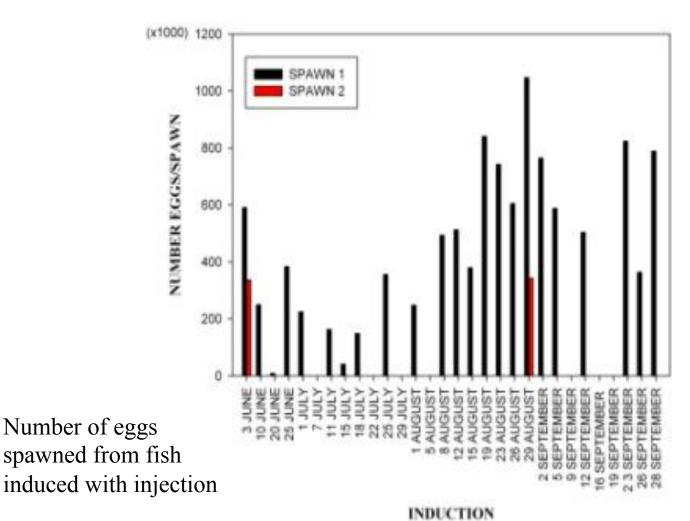



# Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).

| Treatment | N <sup>a</sup> females<br>that spawned | N°<br>Inductions | N° spawns | Spawns/ Induction P < 0.01 | Spawn hour<br>Latency<br>period (h): | N° eggs/spawn<br>P < 0.01 |
|-----------|----------------------------------------|------------------|-----------|----------------------------|--------------------------------------|---------------------------|
| Natural   | -                                      | -                | 19        | -                          | 5.38±1.65                            | 1,151,610±339,375a        |
| Injected  | 3                                      | 29               | 22        | $0.79\pm0.49^{b}$          | 43.14±2.36                           | 448,483±265,552b          |
| Implanted | 3                                      | 12               | 36        | $3.0\pm1.65^{a}$           | 45.35±8.65                           | 256,454±283,554°          |



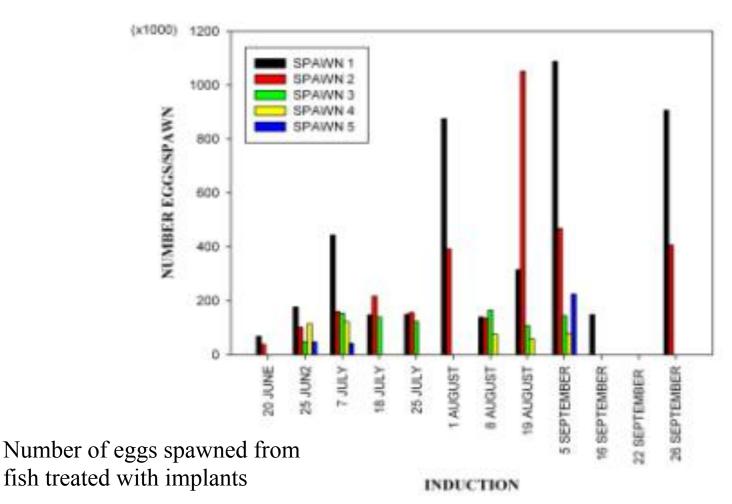





Number of eggs from fish with natural spawning

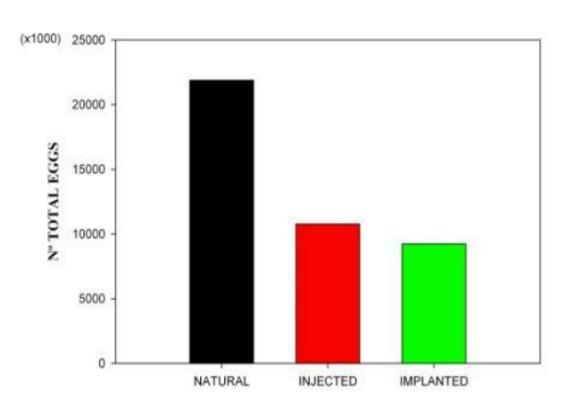





Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).



Greater amberjack (Seriola dumerili)


#### 2014 outputs

Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).





Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).





Total number of eggs obtained in each treatment.



# Task 3.3 Development of an optimized spawning induction protocol for captive greater amberjack in the eastern Atlantic (led by FCPCT, Hipílito (Pipo) Fernández-Palacios Barber).

| Treatment | % Fertilization P < 0.01 | % Viable 24 h<br>P < 0.01 | % Hatching P < 0.01      | % 4d Live<br>P < 0.01    | % 8d live<br>P < 0.01  |
|-----------|--------------------------|---------------------------|--------------------------|--------------------------|------------------------|
| Natural   | 83.46±23.43a             | 94.46±8.03ª               | 96.24±7.05a              | 70.74±17.45a             | 13.68±15.50a           |
| Injected  | $56.65 \pm 28.88^{b}$    | 87.19±27.50ab             | 89.45±28.10ab            | 59.12±25.38ab            | 7.13±7.40 <sup>b</sup> |
| Implanted | 29.33±32.75°             | 76.67±35.39b              | 75.22±36.15 <sup>b</sup> | 46,63±27.46 <sup>b</sup> | 8.82±13.09ab           |

| Treatment | Egg diameter (n = 4500 | Oil droplet<br>diameter<br>(n = 450) | Total length<br>of larvae at day<br>0<br>(n = 450) | Total length<br>of larvae at day<br>3<br>(n = 450) |
|-----------|------------------------|--------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Natural   | 1.13±0.03a             | $0.30\pm80.02^{a}$                   | $2.59\pm0.09^{a}$                                  | 3.85±0.13a                                         |
| Injected  | $1.10\pm0.02^{b}$      | $0.27 \pm 0.02^{b}$                  | $2,58\pm0.13^{a}$                                  | $3.82 \pm 0.13^{a}$                                |
| Implanted | $1.10\pm0.02^{b}$      | $0.27 \pm 0.02^{b}$                  | $2.45\pm0.13^{b}$                                  | $3.53\pm0.26^{b}$                                  |



# Task 3.4 Development of an optimized spawning induction protocols for F1 greater amberjack in the eastern Atlantic.



Led by IEO Canarias, Salvador Jerez

First Annual Coordination Meeting 4-6 November 2014 Bari, Italy







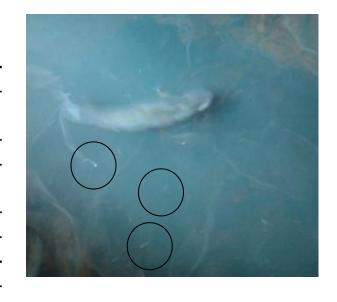


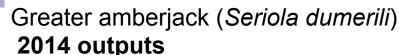
# Task 3.4 Development of an optimized spawning induction protocols for F1 greater amberjack in the eastern Atlantic

➤ The broodstocks remaining were distributed in two groups (500 m3 and 50 m3 tanks volume).

| Group T | ank 500 m <sup>3</sup> |         | Group Tank 50 m <sup>3</sup> |             |         |  |  |  |
|---------|------------------------|---------|------------------------------|-------------|---------|--|--|--|
| ID      | Weigth (kg)            | Sex     | ID                           | Weigth (kg) | Sex     |  |  |  |
| 584663  | 11.3                   | Female  | 562180                       | 9.3         | Male    |  |  |  |
| 566201  | 13.6                   | Male    | 899854                       | 9.4         | Male    |  |  |  |
| 883043  | 7.6                    | Male    | 584537                       | 10.0        | Female  |  |  |  |
| 594669  | 15.8                   | Male    | 588159                       | 12.8        | Unsexed |  |  |  |
| 558222  | 15.9                   | Unsexed | 897974                       | 11.5        | Male    |  |  |  |
| 560004  | 24.5                   | Unsexed | 885828                       | 11.0        | Female  |  |  |  |
| 569463  | 11.3                   | Unsexed | 908613                       | 11.8        | Male    |  |  |  |
| 904365  | 10.9                   | Male    | 559560                       | 17.0        | Unsexed |  |  |  |
| 883043  | 6.6                    | Male    |                              |             |         |  |  |  |
| 592680  | 21.4                   | Female  |                              |             |         |  |  |  |




# M


# Task 3.4 Development of an optimized spawning induction protocols for F1 greater amberjack in the eastern Atlantic

No spawns obtained after treatment of fish in 50 m<sup>3</sup> tank Results of induction treatment in the large tank (500 m<sup>3</sup>)

- ➤ Six eggs batches were collected (between 7/8/2014 and 2/9/2014)
- > A total of 1.4 x 10<sup>6</sup> eggs and mean floating rate of 61.63 %
- Null fertilization rate although there were males in the group

| Date       | Time (hour) | Nº eggs collected | Floating rate (%) |
|------------|-------------|-------------------|-------------------|
|            | 9           | 501,384           | 65.11             |
|            | 13          | 140,400           | 57.46             |
|            | 18          | 101,268           | 46.05             |
| 07/08/2014 |             | 743,052           | 61.07             |
|            | 9           | 157,140           | 57.08             |
|            | 13          | 68,796            | 80.67             |
| 08/08/2014 |             | 225,936           | 64.27             |
|            | 9           | 154,212           | 35.80             |
|            | 18          | 74,376            | 74.62             |
| 09/08/2014 |             | 228,588           | 48.43             |
| 29/08/2014 | 9           | 158,100           | 88.25             |
| 01/09/2014 | 18          | 58,320            | 80.58             |
| 02/09/2014 | 9           | 44,160            | 5.43              |
| Total-mean |             | 1,458,156         | 61.63             |





SEWENT PARAMETER SEVENT PARAMETER SEVENT

Task 3.5 Spawning induction of greater amberjack and egg collection in cages (led by HCMR Constantinos (Dinos) Mylonas).

- GnRHa induced spawning studies
- Presentation of results by Constantinos (Dinos) Mylonas to follow → this talk...









## Greater amberjack (Seriola dumerili)

### 2014 outputs summary



- Description of normal maturational development in wild stocks May and June.
- Natural spawning in captivity
- Initial development of hormonal spawning induction protocols.
  - □ In tanks in East Atlantic
  - □ In tanks in Mediterranean
  - □ In cages in Mediterranean









## WP6 Wreckfish, (Polyprion americanus)

### **Bottlenecks**











### Wreckfish, (Polyprion americanus)

### **Objectives**

- 1. Increase the availability of wreckfish broodstocks in captivity,
- 2. Describe the reproductive cycle in captivity at the level of the pituitary and gonad,
- 3. Develop spawning induction procedures for in vitro fertilization, as well as spontaneous tank spawning,
- 4. Develop a CASA for evaluation of wreckfish sperm and establish cryopreservation protocols for use in in vitro fertilization applications.









## Wreckfish, (Polyprion americanus)



WP6
<u>IEO</u>, HCMR, IRTA, CMRM, MC2, ULL, IFREMER
PM28.96 - 260,932€

|          | Ye | ar 1 | (20) | l4) | Ye | ar 2 | (20) | 15) | Ye        | ar 3 | (20) | 16) | Ye | ar 4 | (20) | 17) | Ye | ar 5 | (20) | 18) |
|----------|----|------|------|-----|----|------|------|-----|-----------|------|------|-----|----|------|------|-----|----|------|------|-----|
|          | Ma | Ju   | Se   | De  | Ma | Ju   | Se   | De  | Ma        | Ju   | Se   | De  | Ma | Ju   | Se   | De  | Ma | Ju   | Se   | Dε  |
|          | 3  | 6    | 9    | 12  | 15 | 18   | 21   | 24  | <b>27</b> | 30   | 33   | 36  | 39 | 42   | 44   | 48  | 51 | 54   | 57   | 60  |
| Task 3.1 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |      |     |
| Task 3.2 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |      |     |
| Task 3.3 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |      |     |
| Task 3.4 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |      |     |
| Task 3.5 |    |      |      |     |    |      |      |     |           |      |      |     |    |      |      |     |    |      |      |     |



# Reproduction and Genetics species wreckfish



José Benito (Tito) Peleteiro IEO (P8)

First Annual Coordination Meeting 4-6 November 2014 Bari, Italy









# Task 6.1 Collect wild fish to establish new broodstocks (led by CMRM).



- Fishing techniques: 3 animals were captured using a "salabre" since these animals are usually found below floating objects.
- Location: 5 miles West of Corrubedo Cape (La Coruña).
- Delivery date: 2 wreckfish of 2 kg each on the 12/06/2014 and 1 wreckfish weighing 1.5 kg on the 26/08/2014.
- Transportation: on a ship, by sea, in tanks with flow-through water, until the facilities from the "O Grove" Aquarium, where they were maintained in quarentene until weaning to inert food.
- Morphometric measurements were performed and a sample of the fin was taken, for future genetic identification.



## Task 6.2 Describe reproductive cycle (led by IEO)

Blood samples from the CMRM (P19) stock (12 fishes), in order to determine evolution of sexual steroids between January and June 2014 (Samples are currently being processed).



## Task 6.2 Describe reproductive cycle (led by IEO)

### Sampling in fish market



| BIOMETRIC PARAMETER (58 WIDE WRECFISH) | MEDIA  | STD    |
|----------------------------------------|--------|--------|
| TOTAL LENGHT                           | 76,09  | 6,788  |
| ST LENGHT                              | 66,38  | 7,629  |
| PERÍMETER                              | 55,68  | 5,986  |
| WEIGHT (Kg)                            | 7,52   | 2,169  |
| EVIS. WEIGHT (Kg)                      | 6,99   | 1,967  |
| GONAD WEIGHT (g)                       | 17,10  | 20,831 |
| LIVER WEIGHT (g)                       | 95,70  | 71,671 |
| FAT PERIVIS. WEIGHT (g)                | 76,25  | 72,233 |
| STOMACH WEIGHT (g)                     | 125,90 | 56,183 |
| INTESTINE LENGHT (cm)                  | 94,53  | 15,555 |
| INTESTINE WEIGHT (g)                   | 99,27  | 62,688 |
| GSI                                    | 0,20   | 0,161  |
| SHI                                    | 1,21   | 0,497  |
| VSI                                    | 10,31  | 17,233 |

Table 6.2.1. Biometric parameters and idexes (average) determined for the dead animals sampled.







# Task 6.2 Describe reproductive cycle (led by IEO):

 From all animals sampled, besides "in visu" identification of female and male gonads, histological analysis were performed in order to confirm sex and study the possibility of hermafroditism in this specie.

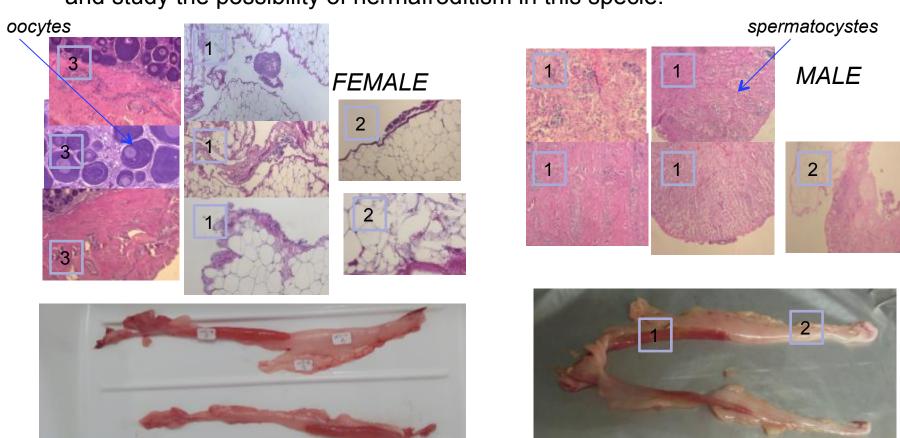


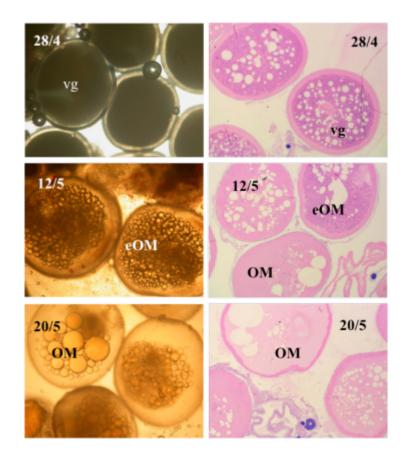

Fig. 6.2.3. Gonadal histology of females and males





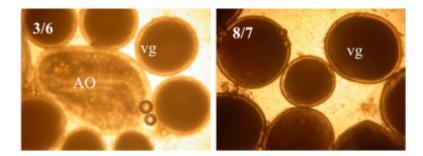





# Task 6.3 Development of spawning induction procedures (led by IEO) stock HCMR (P1)

- A stock of 3 wreckfish (two males of 7.4 and 11.2 kg, and female of 11.8 kg) 15-m³ tanks, under simulated natural photoperiod and constant temperature (15°C). fed 3 times a week with raw fish (mackerel
- April 2014 female was undergoing vitellogenesis, oocytes of 1325
- 12 May 2014 contained vitellogenic oocytes (1250 μm) and oocyte maturation (1450 μm).
- Some eggs (25,000) were also released in the tank, but were not fertilized (Fig. 6.3.1).
- The female was given a GnRHa implant (500 μg) and males (400 μg GnRHa implant). Two spawns were obtained, but a very small number of eggs were fertilized <<1%.</p>
- After that, the fish were biopsied and the female contained post-ovulated eggs and many vitellogenic oocytes, some in atresia/apoptosis (Fig. 6.3.1)










**Fig. 6.3.1.** Wet mount and histological sections of biopsies from wreckfish during the 2014 reproductive season (dates on each photo). eOM = early oocyte maturation, OM = oocyte maturation, Vg = vitellogenic

A final effort to induce spawning was undertaken, giving a higher dose of GnRHa (750 µg). At this time the female contained both post-ovulated eggs and vitellogenic oocytes, but with a high occurrence of atresia (Fig. 6.3.2)



**Fig. 6.3.2.** Wet mount of biopsies from wreckfish during the 2014 reproductive season (dates on each photo). AO = apoptotic/atretic oocyte, Vg = vitellogenic.









 Sperm quality parameters were evaluated Sperm quality was fairly high during the whole reproductive season

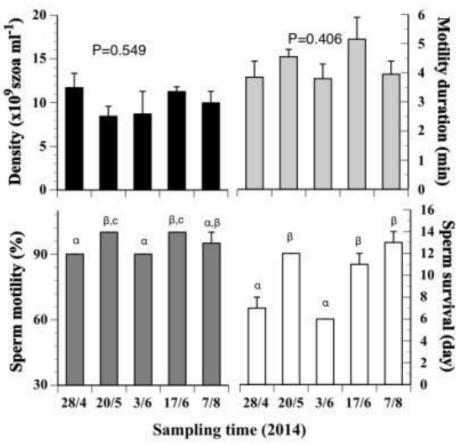



Fig. 6.3.3. Sperm quality parameters of wreckfish during the 2014 reproductive season. Different letter superscripts indicate the existence of significant differences (ANOVA, Duncan's New Multiple Range test, P < 0.05).









# Task 6.3 Development of spawning induction procedures (led by IEO) stock CMRM (P19)

- 12 wreckfish 9.94 to 18.28 kg and sexually undifferentiated
- 80m³ tank
- natural temperature and photoperiod.
- fed dry broodstock diets 3 times a week.
- This stock was sampled on a monthly basis (between January and August) to control sexual maturation. Blood samples were collected to determine sexual steroids. These samples were sent to the HCMR for future analysis.



























# Task 6.3 Development of spawning induction procedures (led by IEO) stock IEO (P8)

- 9 wreckfish (4 females, 3 males and 2 undetermined), weighing between 9,50 and 18.86 kg,
- 130 m<sup>3</sup> tank
- natural temperature and photoperiod.
- fed 3 times a week with semi-moist broodstock diets.
- This stock was sampled twice a month during spawning season,
- No evidence of sexual maturation was observed on females.
- two males showed spermiation, and sperm quality was assessed













# Task 6.3 Development of spawning induction procedures (led by IEO) stock MC2 (P32)

- 27 wreckfish (11 females, 12 males and 4 undifferentiated), weighing between 10.70 and 30.25 kg,
- 3500 m³ exhibition tank (Nautilus transferred to a 50 m³ tank for closer control during spawning season.
- During breeding season, when the first maturity signs were observed, the stock was sampled on a weekly basis to control the maturity stage evolution. Ovary biopsies were made at 9 females, to determine oocytes stages (Figure 6.3.4)

| Plastic tagg | Tagg                      | 06/03/2014        | 20/03/2014          | 29/04/2014         | 13/05/2014        |
|--------------|---------------------------|-------------------|---------------------|--------------------|-------------------|
|              | Nº 8 <b>00-0618-1E7D</b>  | 973,5 ± 37,150 μ  | 1040 ± 50,7093 μ    | 1160 ± 109,5445μ   | 1126± 66,619 μ    |
|              | Nº 9 <b>00-0618-16E6</b>  |                   | 1143,3 ± 104,9943 μ | 1155± 114593102 μ  | 1563± 352,04 μ    |
|              | Nº 11 <b>981023604036</b> | 660 ± 118,300 μ   | 733,3± 143,5104 μ   | 925± 125,13151 μ   | 976± 74,527 μ     |
|              | № 12 <b>98102355554</b>   |                   | 980 ± 64,9175 μ     | 1010± 96,7906042 μ | 1074± 62,549 μ    |
|              | № 19 <b>98102357438</b>   |                   | 846,7 ± 107,6812 μ  | 1060 ± 68,0557 μ   | 995± 71,10 μ      |
| Wide moutl   | № 20 <b>2356915</b>       | 403,5 ± 176,000 μ | 870 ± 99,6422 μ     | 965± 122,581874 μ  | 940 ± 82,115 μ    |
|              | № 21 <b>00-0618-1779</b>  |                   | 976,66 ± 67,7882 μ  | 1095± 114,593102 μ | 2138 ± 135,6044 μ |
|              | 00-0643-7B78              |                   |                     | 940± 114,248114 μ  | 1016± 65,5526 μ   |
|              | 00-061D-5679              |                   |                     |                    | 1066± 82,346 μ    |
|              |                           |                   |                     |                    |                   |

Fig. 6.3.4 Evolution in oocytes diameter from 9 females from the MC2 stock









# Task 6.3 Development of spawning induction procedures (led by IEO) stock MC2 (P32)

- From the 5 females in isolation, three were submitted to abdominal massage for oocytes extraction. Sperm was obtained from males also. "In vitro" fertilization was performed, but spawn quality was poor, despite the oocytes were mature (2300μ in diameter).
- The remaining two females spawned naturally in the tank, from May until August (Fig 6.3.5) Eggs were collected and measured. Fecundity percentage was determined. In almost all cases egg quality was poor, except the one from June 4<sup>th</sup>, with a fertilization percentage of 70%. Nevertheless, this spawn was also of poor quality, since only 14% of these hatched.

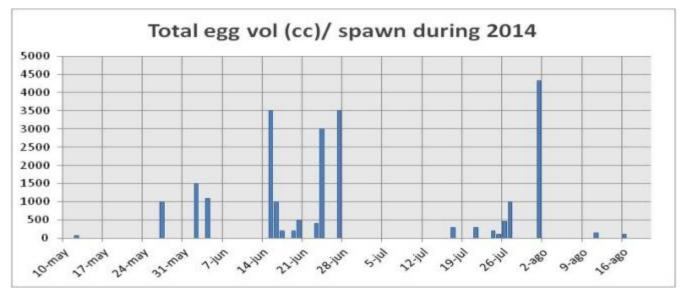
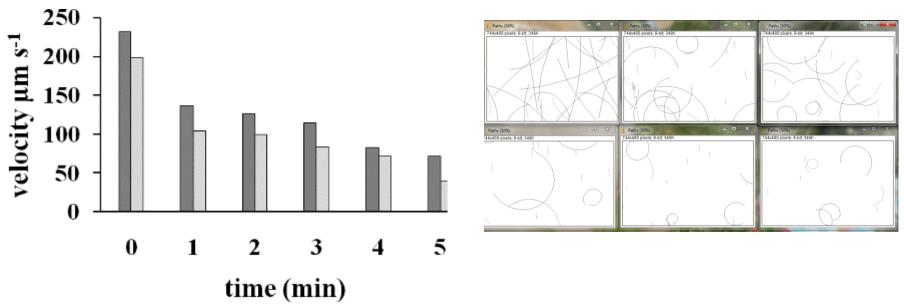



Fig. 6.3.5. Total collected eggs in Acuarium Finisterrae










# Task 6.4 Evaluation of sperm characteristics and cryopreservation protocols (led by IFREMER).

- From April 8<sup>th</sup> to April 13<sup>th</sup>, sperm were collected from 10 males in la Coruña Aquarium, Luso Hispana Aquicultura (LHA) and IEO.
- sperm concentration was 2.41 10<sup>10</sup> (sd :0.4 10<sup>10</sup>, n=9) spermatozoa per ml.



**Fig. 6.4.1** Variations with time of Average Path Velocity i.e along smoothed trajectory (dark grey) and Straight Line Velocity picturing the progressive movement (light grey)









### Wreckfish, (Polyprion americanus)

### 2014 outputs summary

- Samples collected to describe the reproductive cycle of wreckfish.
- Natural spawning observed and data registered
- Preliminary work made to development hormonal spawning induction protocols.
- Initial data on sperm quality to develop in vitro fertilization procedures









## WP7 Grey mullet (Mugil cephalus)

### **Bottlenecks**



Lack of control of the reproductive cycle; low and irregular egg quality









## Grey mullet (Mugil cephalus)

### **Objectives**



- 1. Evaluate the effectiveness of hormone-based treatments on synchronizing gonadal development and improving gamete (eggs and sperm) quality in mature grey mullet,
- 2. Develop hormone-based treatments for induced spawning of grey mullet,
- 3. Optimize a scaled-up breeding of grey mullet in captivity under natural and manipulated photo-thermal regimes,
- 4. Assess the effects of captivity on first sexual maturity and reproductive potential of captive-reared and hatchery-produced grey mullet broodstocks.









### Grey mullet (Mugil cephalus)



WP7
<a href="Mailto:IOLR">IOLR</a>, HCMR, IRTA, UNIBA, ITICAL, DOR, ULL, IFREMER
<a href="PM24.3">PM24.3</a> - 149,981€

|          | Ye | ar 1 | (20) | l4) | Ye | ar 2 | (20) | 15) | Ye | ar 3 | (20) | 16) | Ye | ar 4 | (20) | 17) | Ye | ar 5 | (20)      | 18) |
|----------|----|------|------|-----|----|------|------|-----|----|------|------|-----|----|------|------|-----|----|------|-----------|-----|
|          | Ma | Ju   | Se   | De  | Ma | Ju   | Se        | De  |
|          | 3  | 6    | 9    | 12  | 15 | 18   | 21   | 24  | 27 | 30   | 33   | 36  | 39 | 42   | 44   | 48  | 51 | 54   | <b>57</b> | 60  |
| Task 7.1 |    |      |      |     |    |      |      |     |    |      |      |     |    |      |      |     |    |      |           |     |
| Task 7.2 |    |      |      |     |    |      |      |     |    |      |      |     |    |      |      |     |    |      |           |     |
| Task 7.3 |    |      |      |     |    |      |      |     |    |      |      |     |    |      |      |     |    |      |           |     |
| Task 7.4 |    |      |      |     |    |      |      |     |    |      |      |     |    |      |      |     |    |      |           |     |













- Recombinant FSH was produced using the Pichia pastoris yeast expression system
- Grey mullet breeders from IOLR-NCM hatchery F1 fish (n= 186; age: 5-year old); 4-m3 tanks; 40 ppt salinity natural photoperiod and temperature conditions (25°C in June).
- Methods to evaluate mullet sperm quality have been established.









### Grey mullet (Mugil cephalus)

### 2014 outputs

# Task 7.1 Evaluation of the effectiveness of hormone-based treatments on synchronizing gonadal development (led by IOLR, Hanna Rosenfeld).

- Hormonal acceleration of gonadal development
- In mid July 2014, both mullet females and males were administered recombinant FSH (7 μg/Kg BW) + dopamine antagonist: metoclopramide (15 mg/KgBW).
- The control fish were injected with saline solution.
- Early August 2014, males received 17alpha-methyltestosterone (MT) implants (5 mg/KgBW).

Relative abundance of fully mature females (oocyte >0,55mm) and spermiating males at early- and mid-spawning season (mid September and mid October, respectively) in control and hormonally treated fish.

|              | Cont          | rol         | Treatment     |             |  |  |  |
|--------------|---------------|-------------|---------------|-------------|--|--|--|
|              | Mid September | Mid October | Mid September | Mid October |  |  |  |
| Fully mature |               |             |               |             |  |  |  |
| females (%)  | 29            | 20          | 9             | 75          |  |  |  |
| Spermiating  |               |             |               |             |  |  |  |
| males (%)    | 70            | 50          | 86            | 67          |  |  |  |











# Task 7.2 Development of hormone-based treatments for inducing spawning (led by IOLR, Hanna Rosenfeld).

- Spawning trials are in progress.
  - Treatment: injections priming t=0: GnRHa 10 μg/kg; Met 15mg/kg and resolving t= 22,5h: GnRHa 20 μg/kg; Met 15mg/kg
  - female's failure to ovulate in 5 out of 12 spawning induction trials
  - □ fertilization rate ranging between 0 to 98%. (MT) implants

|          |                  | Contro    | ol-group  |               | Treatment-group |           |                     |               |  |  |
|----------|------------------|-----------|-----------|---------------|-----------------|-----------|---------------------|---------------|--|--|
| Doto     |                  |           | Relative  |               | No. of          |           | Relative            |               |  |  |
| Date     | No. of           | Spawning  | Fecundity | Fertilization | induction       | Spawning  | Fecundity           | Fertilization |  |  |
|          | induction trials | Ratio (%) | $(x10^6)$ | rate (%)      | trials          | Ratio (%) | (x10 <sup>6</sup> ) | rate (%)      |  |  |
| 10.9.14  | 2                | 0         | 0         | 0             | 2               | 0         | 0                   | 0             |  |  |
| 29.9.14  | 1                | 0         | 0         | 0             | 3               | 100       | $2.6 \pm 0.55$      | 0-98          |  |  |
| 22.10.14 |                  |           |           |               | 4               | 75        | 2.268±0.22          | 0-40          |  |  |
|          |                  |           |           |               |                 |           |                     |               |  |  |









## Grey mullet (Mugil cephalus)

### 2014 outputs summary



- Recombinant FSH produced
- Methods for sperm evaluation established
- Percentage of breeders completing gametogenesis increased with treatments
- Spawning induction trails initiated









# **GWP Reproduction and genetics 2014 outputs summary**

- Pikeperch genetic evaluation in final stages
- Meagre paired spawning + genetic evaluation
- Greater amberjack natural and induced spawning + samples to describe gametogenesis
- Halibut F1 spawning increased
- Wreckfish natural spawning + samples to describe gametogenesis
- Mullet spawning trails initiated





Parque Científico Tecnológico















# THE END Thank for your attention

























