

New species for EU aquaculture

WP 3 : REPRODUCTION & GENETICS Maturation and spawning induction of Grey Mullet (*Mugil cephalus*)

Hanna Rosenfeld, Vered Zlatnikov, Chen Bracha, Eldad Toledano, Iris Meiri-Ashkenazi

Israel Oceanographic & Limnological Research (IOLR), The National Center for Mariculture (NCM), Eilat, Israel

Annual Coordination Meeting, 17-19 January, Barcelona, Spain

Grey mullet (Mugil cephalus)

Characteristics:

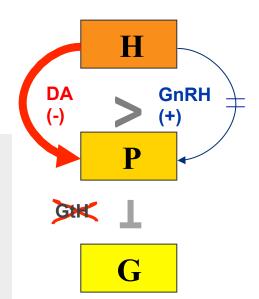
A warm water euryhaline marine teleost with a worldwide distribution

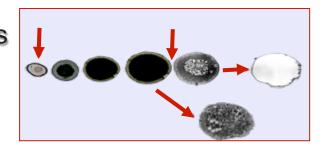
High environmental value:

An efficient aquaculture bioremediator

High economic value:

Highly priced roe in addition to the fish flesh value


The problem: Mullet fingerling supply for aquaculture comes almost exclusively from the wild, as techniques for artificial spawning remain incomplete


Mullets do not spawn spontaneously in captivity

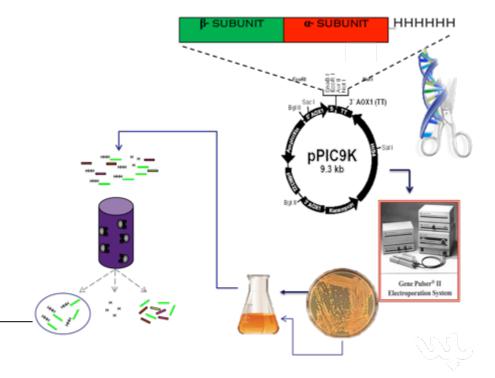
 Females often "get stuck" at early stages of vitellogenesis
 Females do not undergo final maturation
 & spawning

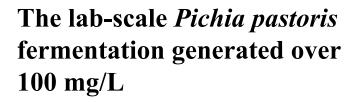
Spermiating males are rarely observed
 In most cases the produced milt is highly viscous and fails to fertilize the eggs

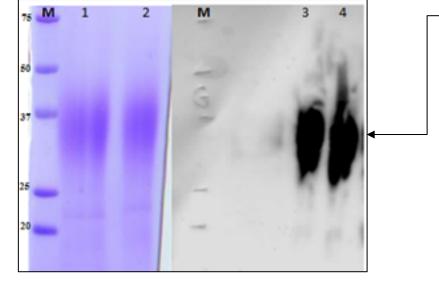
Dopaminergic inhibition appears to have a role in two different junctures of the reproductive cycle of grey mullet, i.e. early stages of gametogenesis & the stage of final gamete maturation (Aizen et al., 2005)

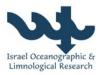
Major aims

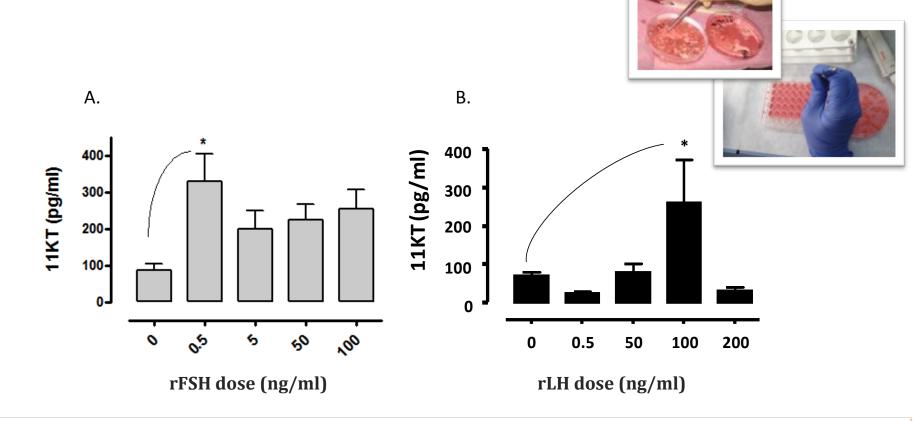
- To increase the abundance of spermiating males exhibiting high quality milt
- To synchronize gonadal development in captive grey mullet females & males
- > To induce spawning


Specific objectives:

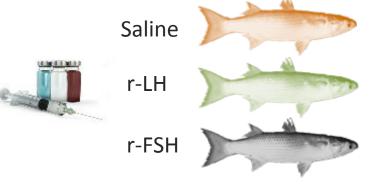

- 1. Produce bio-potent recombinant gonadotropins (r-LH and r-FSH)
- 2. Evaluate their potential to act as therapeutic agents alleviating reproductive dysfunction in captive mullet


Production and purification of grey mullet recombinant gonadotropins





In vitro functional characterization of r-FSH and r-LH


Both r-FSH and r-LH stimulated 11-KT secretion 4-folds higher than the controls. Yet, r-FSH appears to be more potent than r-LH.

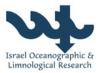
In vivo functional characterization of r-FSH and r-LH

Experimental design

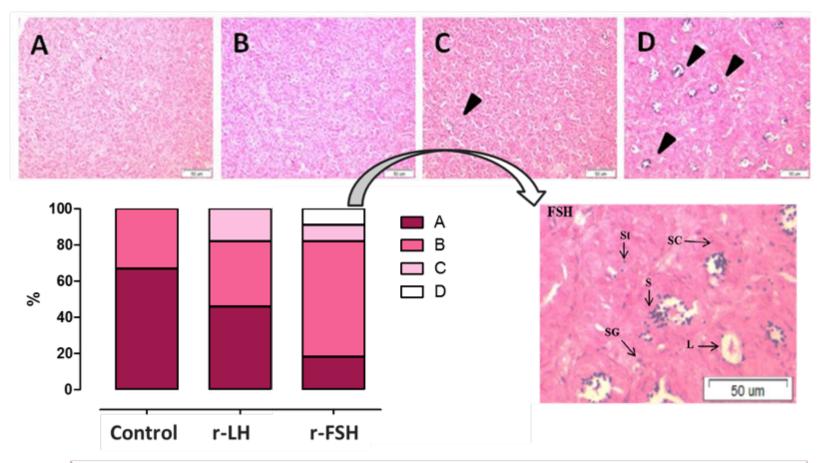
During the onset of the reproductive season (early August, 2014) grey mullet males received a single injection containing either: r-FSH, r-LH or saline (control).

Three weeks later, fish were sampled to evaluate treatment effects on:

- 1) Body and gonad mass (BW and GSI values);
- 2) Testicular development;
- Endogenous pituitary-gonad endocrine axis (i.e., gonadotropin βsubunit synthesis and sex steroid circulating levels).

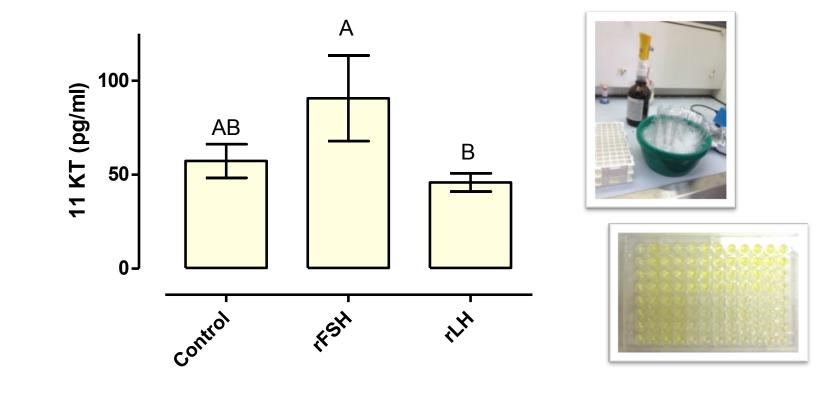


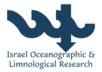
I. Body weight (BW) and Gonadosomatic Index (GSI)

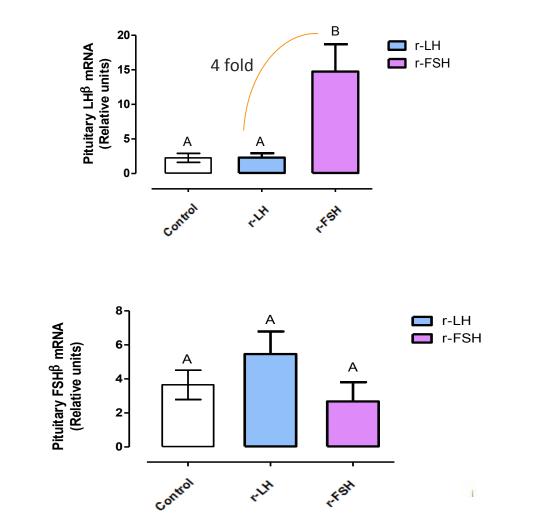

Treatment	BW	GSI
Group	(g)	(%)
С	950 ± 49	$0.045 \ \pm 0.010^{a}$
r-FSH	863 ± 41	0.088 ± 0.012^{b}
r-LH	890 ± 52	$0.072\ \pm 0.014^{ab}$

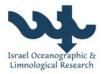
No significant difference in BW across all treatment groups.

The r-FSH- treated males exhibited significantly (P < 0.05) higher GSI values

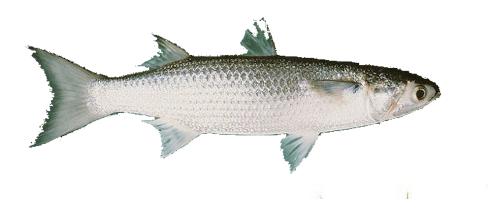

II. Spermatogenic development

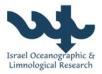

r-FSH and to a lesser extent r-LH enhanced spermatogenic development among captive mullet males.


III. Plasma levels of 11-KT

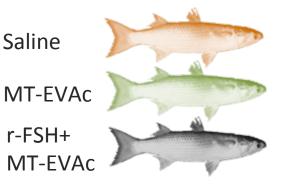


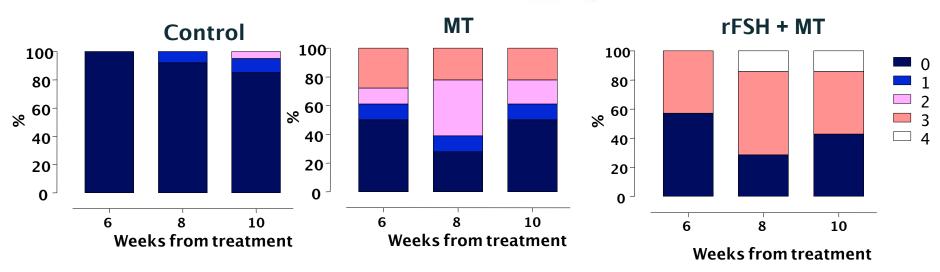
r-FSH treated males exhibited significantly (P < 0.05) higher plasma 11-KT levels as compared to those treated with r-LH.


IV. Pituitary expression of LH and FSH β -subunits


Interim conclusion

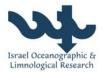
The obtained results demonstrate positive effects of r-FSH on pituitary LH synthesis and on 11-KT secretion giving rise to enhanced gonadal growth and development.


rFSH vs. MT treatment



First series of trials

- 1) 17 α -methyltestosterone-EVAc (4 mg/Kg BW)
- rFSH (5 µg/kg rFSH) + MT-EVAc implantation
 (2-weeks apart)
- 3) Saline only (control group)

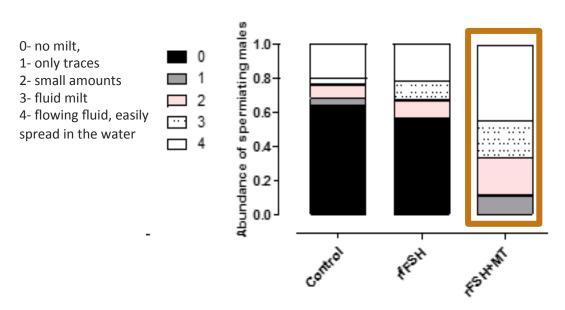


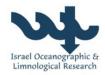
The combined rFSH+MT treatment and to a lesser extent the MT- EVAc implantation increased the abundance of spermiating males and enhanced steady milt production.

rFSH vs. MT treatment

Second series of trials

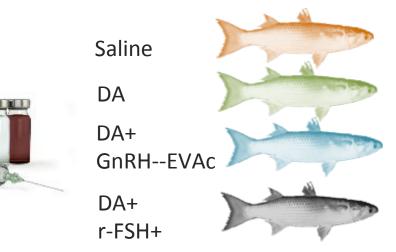
- rFSH (5 µg/kg rFSH)) 1)
- 2) rFSH (5 µg/kg rFSH) + MT-EVAc implantation (2-weeks apart)
- 3) Saline only (control group)





Saline

r-FSH


Treatment effect on sperm production

Hormonal treatment effects on synchronized ovarian development

DA-Dopamine Antagonist (15 mg/KgBW) rFSH- recombinant FSH (5 μg/kg BW) GnRH- GnRH-EVAc implant (36 μg per implant)

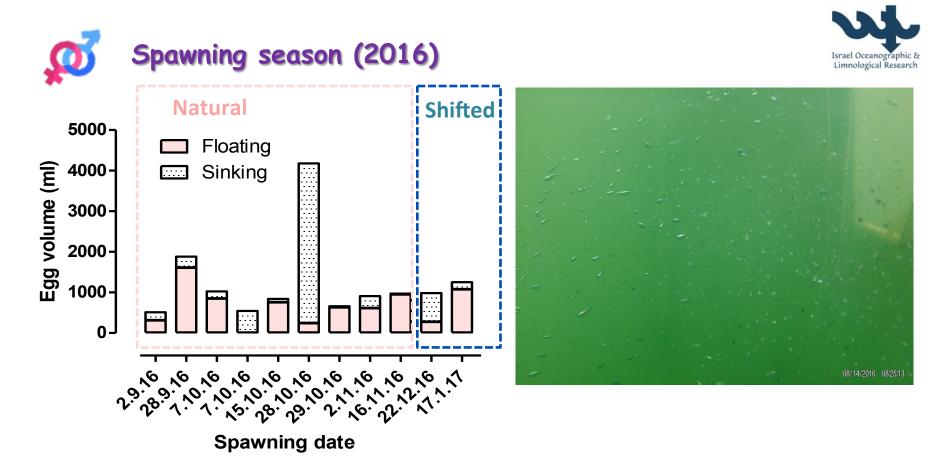
Relative abundance of post-vitellogenic females

	1			
	Control	DA	DA+GnRH	DA+rFSH
Exp. I	27%	58%	71%	
Exp. ll	29%			91%

The DA+r-FSH was found to be the best performing treatment, giving rise to 91% post vitellogenic females

Mormonal treatment effects on spawning success

Spawning induction protocol: Two injections consisting of **GnRH & DA** given **22.5 h** apart.



		-
1	1	
17-	-	
- Andrews	-	

	Control			Treatment				
			Fecundity				Fecundity	
Date	No. of	Spawning	(million		No. of	Spawning	(million	
	induction	success	eggs	Fertilizatio	induction	success	eggs	Fertilizatio
	trials	(%)	/KgBW)	n rate (%)	trials	(%)	/KgBW)	n rate (%)
10.9.14	2	0	0	0	2	0	0	0
29.9.14	1	0	0	0	3	100	2.6 ± 0.55	0-98
6.10.14	0	0	0	0	2	0	0	0
22.10.14					3	66	2.1±0.39	0-80
25.10.14					1	100	0.6	30
30-31.10.1	6	50	1.99±0.9	50-100				
5.11.14	5	0	0	0	2	0	0	0
14.11.14					1	0	0	0
21.11.14	1	100	1.64	0				
22.11.14	2	50	2.75	90				
	17	29.4			14	42.9		

Spawning successes has been improved in the pre-treated vs. control groups (42.9% and 29.4%, respectively).

- > A relatively extended natural spawning season (~3 months).
- > Shifted spawning season can be easily achieved via photo-thermal manipulation.
- ➢ Improved spawning success (60%) among hormonally induced females.
- > Improved synchronization among breeding units increased fertilization rate (70%).
- Fifty million eggs in total (average fecundity: 1.76 ±0.52 million eggs/kg)
- Hatching rate: 78.84 ± 11.93 %
- Over two hundred thousand fingerlings were produced

This project has received funding from the European Union's Seventh Framework Programme for Research, technological development and demonstration (KBBE-2013-07 single stage, GA 603121,

DIVERSIFY

