

Prospects for probiotics with Atlantic halibut lavae

Øivind Bergh Institute of Marine Research, Bergen, Norway

What is probiotics

- Beneficial bacteria which when added to the water or the food affects the health of the host in a positive way
- Often, but not always related to suppression of pathogens

Vadstein, Mo and Bergh 2004

Why challenge?

Basic questions:

- Is "the bug" virulent?
- How does it affect the host?
- How does it enter the host?

Applied:

- How can we protect the host
- How can we verify that the protection is effective?

Collaborators: PROAQUA

- Danish Technological University
- University of Bergen
- HMRC Crete

Sequencing of community

To be performed by Dr. Nina Sandlund

Challenge experiments on yolk sac larvae

- •Rearing of larvae in multiwell dishes
- •72 independent parallel wells
- One egg/larvae per well
- Larvae hatches in well, lives until end of yolk sac period
- •Protocol developed from various challenge experiments during two decades:
 - -Bergh et al. 1991 J. Fish Dis.
 - -Sandlund et al. 2010 Dis. Aquat. Org.

Immunohistochemistry

Immunohistochemistry – yolk sac larvae

Intestinal ephithelium - cod

Epidermis - halibut

Available online at www.sciencedirect.com

Aquaculture

Aquaculture 255 (2006) 323-333

www.elsevier.com/locate/aqua-online

Probiotic effect in vivo of *Roseobacter* strain 27-4 against *Vibrio (Listonella) anguillarum* infections in turbot (*Scophthalmus maximus* L.) larvae

Miquel Planas ^{a,*}, María Pérez-Lorenzo ^a, Mette Hjelm ^b, Lone Gram ^b, Ingrid Uglenes Fiksdal ^c, Øivind Bergh ^c, José Pintado ^a

a Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain
 b Danish Institute for Fisheries Research, Department of Seafood Research, Søltofts Plads, c/o Technical University of Denmark Bldg. 221,
 DK-2800 Kgs. Lyngby, Denmark
 c Institute of Marine Research, PO Box 1870, N-5817, Bergen, Norway

Received 3 May 2005; received in revised form 17 November 2005; accepted 19 November 2005

Addition of Roseobacter(Rugeria) 27-4 positively affected survival

Note: probiotics in lumen

– NOT attached to epithelium

Comparative mortality pilot

5 different Vibrio spp 3 x V. anguillarum V. splendidus V. salmonicida

Fig. 1. Scophthalmus maximus. Cumulative percentage mortality of turbot larvae challenged with the bacterial strains HI-610, HI-618, HI-644, HI-651, and HI-1576 (see Table 1 for bacterial strains used. High: challenge dose 10⁶ CFU ml⁻¹, low: challenge dose 10⁴ CFU ml⁻¹, control: unchallenged larvae. Day 0: day of hatching. Red symbols: mortality rates significantly different from the control (p < 0.01 Bonferroni correction)

3 different fish larvae: turbot, halibut, cod

Fig. 2. Hippoglossus hippoglossus. Cumulative percentage mortality of halibut larvae challenged with the bacterial strains HI-610, HI-618, HI-644, HI-651, and HI-1576 (see Table 1 for bacterial strains used). High: challenge dose 10^6 CFU ml⁻¹, control: unchallenged larvae. Red symbols: mortality rates significantly different from the control (p < 0.01 Bonferroni correction)

Fig. 3. Gadus morhua. Cumulative percentage mortality of cod larvae challenged with the same bacterial strains and doses as in Fig. 1. Day 0: day of hatching. Red symbols: mortality rates significantly different from the control group (p < 0.01 Bonferroni correction)

Table 1. Bacterial strains and plasmids.

Strain or plasmid	Genotype or relevant markers
Strains	
P. gallaeciensis BS107 (DSM17395)	Wild type
P. gallaeciensis BS107-Pda8	CDS104961::EZ-Tn5, Kan ^R
P. gallaeciensis dsRed	MiniTn7(Gm ^R)P _{A1/04/03} DsRedExpress-a
V. anguillarum NB10	Serotype O1, cm ^R , PA1/04/03-RBSII- <i>gfp</i> mut3*-T1
V. anguillarum HI610	Serotype O2α
Plasmids	
EZ-Tn5 [™] Transposome	EZ-Tn5 <r6kγori, kan<sup="">R>Tnp</r6kγori,>
pAKN132	miniTn7(Gm)P _{A1/04/03} DsRedExpress-a
pUX-BF13	Helper plasmid: Tn7 transposase proteins
pPDA11	tdaCp::gfp ligated into broad host range vector pRK415

doi:10.1371/journal.pone.0043996.t001

Figure 3. Reduction of *V. anguillarum* in cultures of *Tetraselmis suecica* by *Phaeobacter gallaeciensis*. Colony-forming units of *V. anguillarum* inoculated at 10^1 cfu/ml (A) and at 10^4 cfu/ml (B) in presence of *P. gallaeciensis* wild type (\blacksquare), in presence of the *P. gallaeciensis* TDA-negative mutant (\triangle), and in the monoxenic control (\blacktriangledown).

Figure 7. Mortality of cod larvae during the challenge trials. Mean values of two independent triplicate experiments. The single-larvae cultures were simultaneously inoculated with P. gallaeciensis wild type and V. anguillarum (T5, \blacksquare), or with the TDA-negative mutant of P. gallaeciensis and V. anguillarum (T6, \square). Unexposed larvae and larvae exposed to single bacterial strains acted as controls: Negative Control (T1, \blacksquare), only V. anguillarum (T2, \blacktriangle), only P. gallaeciensis wild type (T3, \blacktriangledown), and only P. gallaeciensis TDA-negative mutant (T4, \spadesuit). doi:10.1371/journal.pone.0043996.g007

Screening and characterisation of potentially pathogenic bacteria associated with Atlantic cod Gadus morhua larvae: bath challenge trials using a multidish system

Nina Sandlund*, Øivind Bergh

Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway

Most bacteria associated with larvae are opportunists, not able to cause mortality alone

V. anguillarum is a "true" pathogen

Comparative assessment of Vibrio virulence in marine fish larvae

- 3 Anita Rønneseth¹⁺, Daniel Castillo²⁺, Paul D'Alvise^{3+,6}, Øyvind Tønnesen¹, Gyri Haugland¹,
- 4 Torben Grotkjær³, Kirsten Engell-Sørensen⁴, Louise Nørremark⁴, Øivind Bergh⁵, Heidrun I.
- 5 Wergeland¹ and Lone Gram³
- 8 ² University of Copenhagen, Marine Biology Section, Strandpromenaden 5, DK-3000
- 9 Helsinore

1

2

6

- 10 ³ Technical University of Denmark, Department of Biotechnology and Biomedicine,
- 11 Matematiktorvet 301, DK-2800 Kgs. Lyngby
- 12 ⁴ Fishlab, Terp Skovvej 107b, DK-8270 Hojberg
- 13 ⁵ Institute for Marine Research, Nordnesgaten 50, N-5005 Bergen
- 14 6 Present address: University of Hohenheim, Institute for Animal Science, Garbenstraße 17,
- 15 D-70599 Stuttgart

Figure 3. Reduction of *V. anguillarum* in cultures of *Tetraselmis suecica* by *Phaeobacter gallaeciensis*. Colony-forming units of *V. anguillarum* inoculated at 10^1 cfu/ml (A) and at 10^4 cfu/ml (B) in presence of *P. gallaeciensis* wild type (\blacksquare), in presence of the *P. gallaeciensis* TDA-negative mutant (\blacktriangle), and in the monoxenic control (\blacktriangledown).

Figure 7. Mortality of cod larvae during the challenge trials. Mean values of two independent triplicate experiments. The single-larvae cultures were simultaneously inoculated with P. gallaeciensis wild type and V. anguillarum (T5, \blacksquare), or with the TDA-negative mutant of P. gallaeciensis and V. anguillarum (T6, \square). Unexposed larvae and larvae exposed to single bacterial strains acted as controls: Negative Control (T1, \blacksquare), only V. anguillarum (T2, \blacktriangle), only P. gallaeciensis wild type (T3, \blacktriangledown), and only P. gallaeciensis TDA-negative mutant (T4, \spadesuit). doi:10.1371/journal.pone.0043996.g007

Challenges wia live feed = oral administration

Challenge with V. logei

Intestine 24 h post challenge

72 h post challenge

V. splendidus

Gills

Intestine

