FP7-KBBE-2013-07, DIVERSIFY 603121

New species for EU aquaculture

Deliverable Report

Deliverable No:	D18.4		Delivery Month:	60				
Deliverable Title	Determine the most effective culture system (RAS vs flow-through) for wreckfish							
	larvae							
WP No:	18	V	VP Lead beneficiary:	P8. IEO				
WP Title:	Larval husbandry -wr	eckfish						
Task No:	18.2. Subtask 18.2.2	Ta	sk Lead beneficiary:	P8. IEO				
Task Title:	Test of two culture systems RAS (CMRM) and flow-through (IEO) in terms of							
Task The:	larval culture conditio	ns and feeding proto	ocols.					
Other beneficiaries:	P1.HCMR	P19. CMRM	P32. MC2					
Status:	Delivered/delayed		Expected month:	36				

Lead Scientist preparing the Deliverable: Blanca Álvarez-Blázquez (IEO)

Other Scientists participating: Peleteiro, J.B., Rodríguez Villanueva, J.L., Linares, F., Vilar Perón, A., Pérez Rial, E., Lluch, N., Gómez Ceruelo, C.

Objective:

Determine the most effective culture system, recirculating aquaculture system (RAS) vs flow-through (FT) for wreckfish larvae: three culture systems were tested; two are representative of intensive culture (RAS and FT) while the other is a semi-intensive (Mesocosm) system.

This deliverable presents and defines the culture protocols for the three systems: 1) management of RAS and FT under intensive and semi-intensive conditions, 2) different larval and prey densities, 3) feeding sequence, according to the system used, 4) control of the physical and chemical parameters, 5) feeding protocols for the three systems during the first 30 dph. In addition, this deliverable includes information on larvae survival, growth parameters on larval quality, deformities and size distribution. Samples were also taken to determine biochemical profiles of the larvae (proteins, lipids and EFA contents).

Background:

The wreckfish artificial culture is one of the more viable options beside the new species to develop in the field of commercial aquaculture. Its fast growth, the specific characteristics relation with the management, high price in market and shortage in our coasts, us well us its genetic homogeneity in the current stocks (Sedberry et al., 1999; Ball et al., 2000), the high growth index during the pelagic period (Kentouri et al., 1995; Papandroulakis et al, 1997) and the long phase on juvenile growth, seems to appear wreckfish like a firm candidate for diversify of the marine aquacultures species in Europe.

The first references about wreckfish natural spawns in captivity were cited by Papandroulakis et al., who maintained a wreckfish stock during 8 years in that advances in knowing sperm and oocytes quality were made. Fertilized eggs in captivity was obtained for stripping an artificial fertilization in quantity enough to be cultured in experimental conditions, allowing realize a detailed description of embryonic and larvae development until mouth opening (Papandroulakis et al., 2004).

Recently, Peleteiro et al. (2011) obtained viable spawns by artificial fertilization with sperm and oocytes coming from Aquarium Finisterrae (MC2). Besides this precedents a private industry, Isidro 1952 (formerly

Isidro de la Cal) with facilities of marine cultures and with a wreckfish broodstock in Valdoviño (A Coruña), achieved to close the cycle in 2013 with one individual that actually survive in the MC2.

During 2018, more advances in achieving natural spawns and larval husbandry have been done in the three Galician wreckfish stocks resulting in very good larval hatching (42-82%) and survival until 34-37 dph. At Instituto Galego de Formación en Acuicultura, IGAFA (CMRM) two batches of larvae, one from Instituto Español de Oceanografía (IEO) natural spawn and one from MC2, produced larvae and juveniles at least with 5 months of live. This was the first time in the project that we succeeded in producing juveniles weaned to inert food, and it signifies a milestone in the efforts to produce wreckfish under aquaculture conditions. This trial acquired important data on growth and increased our knowledge about the feeding protocol and the specific behavior and metamorphosis of wreckfish larvae.

Material and methods:

2014

Only one of all spawns in MC2 facilities had acceptable quality to attempt culture. Once egg incubation was concluded (hatching percentage: 14%), the 11340 larvae (3.8 ± 0.3 mm) with 100% yolk sac were transferred to a 85 L culture tank (**Fig. 1**) in FT at 11..min⁻¹. The yolk sac was consumed in 11 days post hatching (dph) at 14±0.6°C (**Fig. 2**); mortality was 100% at 20 dph. A daily dose of 8 rot.ml⁻¹ (*Brachionus plicatilis*) were used as diet, but no ingestion of this live prey was observed. Larvae at 20 dph had a functional digestive system but all presented empty stomachs.

Figure 1. Eggs inside a collector tank, separation of viable eggs and incubation, at the MC2 facilities.

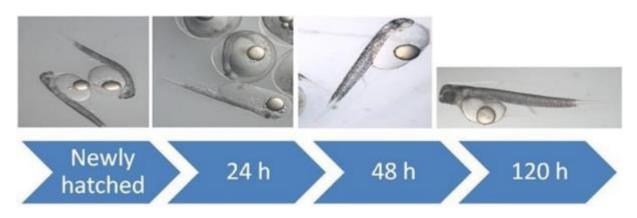
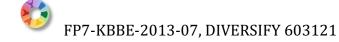



Figure 2. Yolk consumption from 1 to 120 hours after hatching.

2015

In the IEO, three experiments with a batch of larvae from an artificial fecundation of own stock and two from two spontaneous spawns from MC2 broodstock were developed (**Table 1**). The culture system was traditional, in close circuit of water until 10 dph and the rotifer enriched with Isochrysis. Biometric data of the yolk sac and the droplet consumption were taken (**Fig. 1a**). Samples for biochemical analysis (fatty acid profile) were collected and carried out in CIMA (CMRM) (see D12.1).

Trials in HCMR and MC2 with recirculation aquaculture system (RAS) were done (**Table 1**). Densities between 0.2-52.0 larvae l⁻¹ (MC2) and 2.0 larvae.l⁻¹ (HCMR) in 85 L tanks were tested. Larval food based in live prey of enriched rotifer with microalgae and copepods was administrated in MC2 and HCMR facilities (**Table 1**). Batches of larvae from MC2 for biochemical analysis were collected and for ontogeny of digestive system and eye carried out by HCMR (see D18.1). In both facilities larval survival of 22 dph was achieved (**Table 1**).

Table 1. Different spawns at the MC2 and IEO and larval culture during 2015.

STOCK	TRIAL	DATE	LARVAE (nº)	LARVAE DENSITY (nº larv/l)	MEAN T ^a	FEED	SURVIVAL (dph)	WATER SYSTEM	TANK VOL (L)
IEO	1	10-04-15	110	0,2	17,4		17	FT since	400
MC2(IEO)	2	27-05-15	100	0,2	19,1	Enrich rot	10	10 dph	400
MC2(IEO)	3	05-06-15	1000	2,0	18,4		10	ro upi	400
	4	04-05-15	4000	2	16,3	Enrich rot +copepods+Artemia	22	RAS	83
	5	27-05-15	2000	2	16,3	Enrich rot +copepods	22	RAS	83
	6	18-05-15	20	0,2	16	Enrich rot +copepods	10	RAS	83
MC2	7	22-05-15	2600	31,3	15	Enrich rot +copepods	19	RAS	83
IVIC2	8	27-05-15	10600	127,7	14,5	Enrich rot +copepods	21	RAS	83
	9	01-06-15	180000	2168,7	14,5	Enrich rot +copepods	22	RAS	83
	10	05-06-15	18500	222,9	15	Enrich rot +copepods	18	RAS	83
	11	08-06-15	3700	44,6	15,3	Enrich rot +copepods	18	RAS	83
HCMR	12	04-05-15	4000	2	16,3	Enrich rot +copépods+Artemia	22	RAS	85
MC2 (HCMR)	13	27-05-15	2000	2	16,3	AF+EG	22	RAS	85

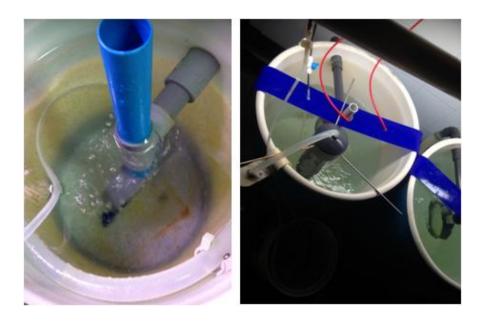
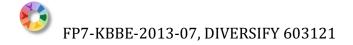
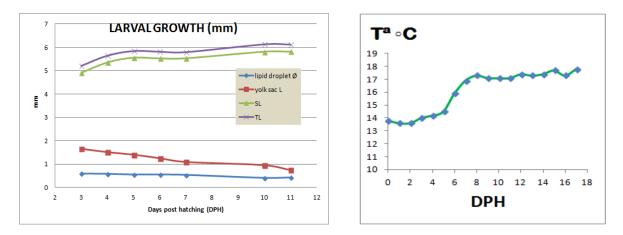




Figure 3. Culture tanks with recirculation (RAS) at MC2 facilities.

Larval yolk sac and lipid droplet length was tested in the IEO in flow-through (FT) larval culture (**Fig. 4**) and photos of all sequence were taken (**Fig. 5**). In FT conditions larvae alive until maximum of 17 dph.

Figure 4. Water temperature (13.8-17.9°C) and larval growth until 11 dph. Yolk sac (mm) and changes in the fat drop (mm).

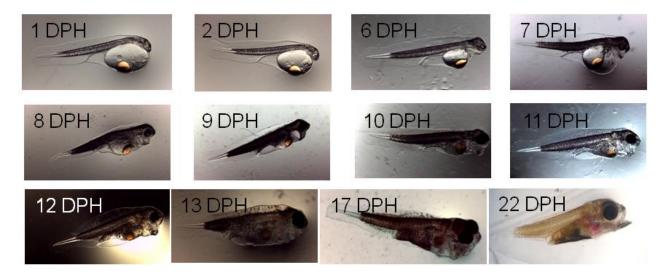


Figure 5. Larval growth until 22 days post-hatching

2016

During 2016, spawn quality at MC2 improved considerably and the IEO stock started to spawn as well (**Table 2**) and trials with different culture methods were tested. Larvae at the IEO were reared in 500 l tanks in closed circuit until 9 and 10 dph, using a "green water" system with a rotifer and enriched artemia with Isochrysis diet and natural photoperiod during endogenous feeding. After opening mouth and consumption of all yolk sac, artificial light (410 Lux) was used for 12 h per day until the end of the culture period. Different ranges of sea water temperature were used (see D18.2). Values between 7.3 and 8.8 mg.l⁻¹ water oxygen dissolver were measure during the experiments.

STOCK	TRIAL	DATE	LARVAE (n°)	LARVAL DENSITY (nº Larv/l)	MEAN T ^a	FEED	SURVIVAL (dph)	WATER SYSTEM	TANK VOL. L		
IEO	1	13-05-16	3921	7,8	19,8	Enrich rot + Art. AF	20	CC UNTIL 12 DPH	500		
IEO	2	18-05-16	7793	8,7	20,7	Enrich rot + Art. AF	20	CC UNTIL 9 DPH	500		
ILO	4	18-05-10	2560	2,8	16,2	Enrich rot + Art. AF + EG	27	CC UNIL 9 DI II	500		
IEO	3	20-05-16	2200	9,2	17,1	NONE	4	FT	1000		
MC2(IEO)	4	13-06-16	2500	2,8	18,3	Enrich rot + Art. AF	20	FT	1000		
MC2(IEO)	5	12-07-16	1495	3,3	16,7	Enrich rot + Art. AF	23	FT	1000		
MC2(IEO)	3	12-07-10	12-07-10	12-07-10	3937	8,8	16,8	Enrich rot + Art. AF	25	FT	1000
MC2	6	26-05-16	1600	0,2	16,5	Copepod Tisbe + Acartia	22	MESOCOSM	10000		
MC2	U	20-05-10	1000	1,0	17,5	Copepou risbe + Acarta	11	FT	10000		
MC2	10	13-06-16	6000	10,0	17,5	Copepod Tisbe + Acartia	10	CC	1000		
MC2	11	08-07-16	600	0,1	15,5	Copepod Tisbe + Acartia	3	RAS	3 x30 L		
NIC2	12	12-07-16	6000	0,8	15,5	Copepod Tisbe + Acartia	23	KAS	5 X30 L		
MC2	13	16-07-16	100	2,5	17,5	NONE	4	CC	1000		
MC2	14	20-07-16	2500	62,5	17,5	Copepod Tisbe + Acartia	15	FT	10000		

Table 2. Parameters of the different larvae culture at MC2 and IEO in 2016

Samples of larvae were taken once a week and morphological parameters were measured, showing decrease in both values due to deformities along the period of the culture and digestibility problems with live food (**Fig.** 6).

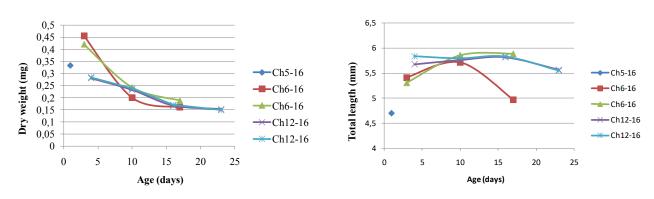


Figure 6. Larvae growth (mg dry weight) and length (mm) during different larvae cultures.

Trials with close circuit (MESOCOSM) and another with water renovation (FT) and recirculation (RAS) adding copepods (Tisbe and Acartia) and Artemia as diet were done in MC2, with poor results in terms of growth and survival until 22 dph (Álvarez-Blázquez, 2016) (**Table 2**).

Maximum larval survival was 27 dph in FT, eating enriched rotifer with microalgae and AF/EG Artemia nauplii since 9 dph. Mean sea water temperature was 16.2°C and larvae density 2.8 larvae.l⁻¹.

Respect to the biochemical profiles, larvae batches were analyzed at different days of life, which were useful for designing enrichments for larval feeding (Task 12.1).

2017

During this year, only larvae from 40% of the spawns were reared (**Table 3**), due to zootechnical problems during the eggs incubation phase. In the case of MC2 stock a problem with the casual death of part of the adult female stock occurred. In IEO and IGAFA (CMRM) a total of five trials with larval culture in FT were done (**Table 3**). The larvae survived a maximum of 29 days at the IEO facilities fed enriched rotifers with Isochrysis, with a mean sea water temperature of 16°C and larvae density of 6.8 larvae.ml⁻¹.

STOCK	TRIAL	DATE	LARVAE (n°)	LARVAL DENSITY (nº Larv/l)	MEAN T ^a	FEED	SURVIVAL (dph)	WATER SYSTEM	TANK VOL.
IEO	1	13-04-17	2049	6,8	15-17	Enrich rot	29	FT	400
ILO	•	15-04-17	2049	6,8	19-21	Enrich rot	24	11	100
IEO	2	22-04-17	15400	4,4	16-19	Enrich rot	26	FT	
CMRM	3	05-04-17	18400		15,1	Enrich rot	13	FT	400
CMRM	4	18-04-17	1050	14	14-17	Enrich rot	11	$FT \ (\text{mess booton})$	3X25 L
CMRM	5	26-04-17	164	3,3	14-17,4	Enrich rot	11	FT	400

Table 3. Parameters of the different spawns at the MC2 and IEO and larval culture.

Trials were focused in egg incubation and larvae culture at different sea water temperatures (D.18.2) and also in trials with different enrichments for live prey (see D12.1). Larvae samples at different days of life were taken. Length, yolk sac and droplet were measured, obtaining curves of growth in length and yolk sac and droplet consumption (**Fig. 7**).

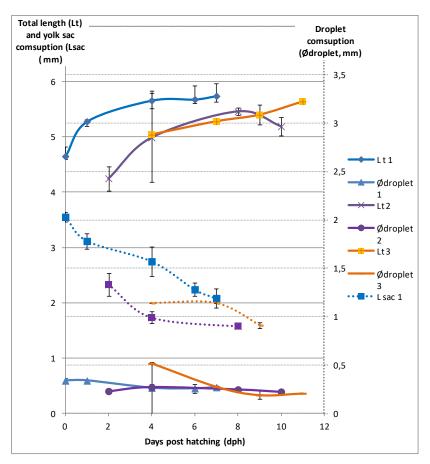


Figure 7. Total length, yolk sac and droplet consumption (mm) of larvae since 0 to 11 dph.

2018

During this year a lot of experimental trials in larval husbandry were done in IEO, MC2 and IGAFA (CMRM) facilities focused in adjust different culture system (FT, MESOCOSM and RAS) and environmental parameters such as water temperature, volume, density, food sequence, air, light, tanks shape and colour (**Table 4**).

FOOD

STOCI	X SPAV	WN	DATE	(n°)	DENSITY (nº Larv/l)	Ta FOOD		L (dph) WATI	ER SYSTEM	VOLUME (L)
	1	0	9-03-18	171921	21	15,2 ROT 10-26 dph. A0 11-28 dph		29 FT. NA	TURAL T ^a	8000
IEO	2	2 02-		110740	7,1	17,2 ROT ORIGREEN 7-14 dph. A0 11-13. A	-1 ORIGREEN 14	4-17 dp 17 CC. HC	OT WATER	8500
	3	0	7-04-18	134802	5,5	17,5 ROT 7-10 DPH. A0 8-11 dph.		23 CC. HC	OT WATER	8000
STOCK	SPAWN	DATE	LARVAI (n°)	LARVAE DENSITY (n)	°/I MEAN T°	FOOD	SURVIVAL (dph)	WATER SYSTEM	TANK VOL (L)	COLOUR BOTTON TANK
	1	16/02/201		7		ROT ARAq 12-18 dph	18 DPH	CC until 14 dph	500	WHITE
	2	21/02/20		13		ROT ARAq 11- 24dph. A0 15-24 dph	24 DPH	CC until 11 DPH	1000	WHITE
	3	27/02/201		36		ROT ARAq 10-19 dph. A0 13-23 dph	23 dph	CC until 12 dph	2000	WHITE
	4	04/03/201		1,8		ROT ARAq 12-27 dph. A0 20-27 dph	27 DPH	CC until 11 dph. FT 120 cc/15 seg	500	BLACK
	5	10/03/201	8 37844	18,9		ROT enrich. T-Iso 11-25 dph. A0 19-27 dph	27 DPH	FT 500 cc/15 seg	2000	WHITE
	6	19/03/2018	8 102570	39		ROT ARAq 10-20 dph. A0-A1: 12-24 dph	24 DPH	FT 500 cc/15 seg	800	WHITE
				26		ROT enrich. T-Iso 10-18 dph. A0 11-18 dph	19 DPH	CC until 9 dph	800	WHITE
	7	24/03/201				ROT CONTROL 9-17 dph. A0 12-20 dph	21 DPH	FT	400	
	8	24/03/201	8 21888	33		ROT enrich T-Iso10-15 dph. A 0 12-17 dph	19 DPH	FT	1750	WHITE
				4,5	17,6	ROT CONTROL 9-14 dph. A0 11-13. A-1 T-ISO 13-22 dph	22 DPH		400	WHITE
	9	28/03/201								
	10	29/03/201	8 71524 45182	46	17,1	ROT enrich. T-Iso 8-15 dph. A0 11-14. A1-15-22 dph	22 DPH	FT	2000	BLACK
IEO	11	29/03/201		24	16,8	ROT ORIGREEN 7-15 dph. A0 10-14. A1 ORIGREEN 14-19 dph	19	СА	2000	WHITE
	12	07/04/201		5,5	15,1	ROT ORI-GREEN 7-10 dph. A0 8-11 dph.	11 DPH	FT	8000	WHITE
	13		134802	20,4		ROT ORI-GREEN 7-10 dph. A0 8-10. A1 10-18 dph	18 DPH	C C + AIR	2000	WHITE
	14			14,9	18,2	ROT ORI-GREEN8-10 dph. A0 9-10. A1 11-16 dph	18 DPH	C C + AIR	900	WHITE
	15	12/04/201	8 54116	12,8		ROT ORI-GREEN 7-14 dph. A0 7-9, A1 10-20 dph.	20 DPH	FT	600	WHITE
				14		ROT ORI-GREEN 6-11 dph. A0 7-9. A1 10-20 dph	23 DPH		2000	WHITE
	16	16/04/201	8 67428	18,6		ROT ORI-GREEN 6-11 dph. A0 6-9. A1 10-20 dph	21 DPH	FT	400	WHITE
	10	10/04/201	0/420	16,4		ROT ORI-GREEN 6-13 dph, A0 6-9. A1 10-17 dph	17 DPH	11	400	WHITE
				20,4		ROT ORI-GREEN 6-13 dph, A0 6-9. A1 10-17 dph	17 DPH		800	WHITE
				5,7		ROT ARA 6-7 dph	8 DPH		3X100 L	WHITE
	18	25/04/201	8 39798	5,7		ROT CONTROL 6-7 dph	8 DPH	FT	3X100 L	WHITE
		20.0 0 201	5,770	19,2		ROT T-ISO 5-8dph. A0 9-10. A1 11-22dph	22 DPH		400 L	WHITE
				18,3	18,9	ROT T-ISO 5-8 dph. A0 9-10. A1 18 dph	18 DPH		400 L	WHITE

Table 4. Larvae cultures at IEO facilities during the spawning season of 2018.

LARVAE LARVAL MEAN

More than 50 experiments of larval culture have been carried out in the IEO facilities. Several rearing conditions such as photoperiod, water circuit, use of aeration or sequence of feeding used were modified as the season progressed.

The first experiments were carried out in closed circuit up to 6-12 dph, photoperiod of 12h light: 12h dark, with moderate aeration in the center of the tank, green water from day zero and a temperature between 15-18°C. Larvae density ranged from 2 to 30 larvae l^{-1} and survival varied between 4 and 30 dph. A rotifer feeding sequence (10-25 dph) and Artemia nauplii (11-30 dph) was supplied. Oxigen dissolve was between 7.2-8.4 mg.l⁻¹.

In a second stage, new tests were carried out and some of the cultivation parameters were readjusted. Larvae of 1 dph were introduced at densities between 6-20 larvae l⁻¹ in the larval culture tanks and kept in darkness until 7 dph. Temperature between 17-20°C, open circuit (2.5 renewals d⁻¹) and no aeration was maintained. A photoperiod of 10L: 12D and green water culture conditions were applied from 7dph. A feeding sequence for rotifer (7-13 dph), *Artemia* nauplii (8-11 dph) and enriched metanauplii (10-29 dph) was supplied. Survivals between 8 and 30 dph were reported.

In the last tests, some variables were modified. The culture density was maintained between 5-15 larvae l^{-1} , temperature was controlled at $17.9 \pm 1^{\circ}$ C, the oxygen dissolve between 7.0 and 8.4 mg.l⁻¹, the intensity during the light period was adjusted to 400 lux on the surface of the tank and a new feeding sequence was supplied: rotifer (7-18 dph), *Artemia* nauplii (12-19 dph) and enriched metanauplii (17-30 dph). The rest of the culture conditions were the same as those described in the previous paragraph. Survivals between 18 and 34 dph were observed.

For all the experiments carried out during 2018, live prey concentrations were adjusted between 3-10 ml⁻¹, 0.5-1 ml⁻¹ and 0.5-2 ml⁻¹ for rotifer, *Artemia* nauplii and metanauplii, respectively.

TANK

SURVIVA WATED OVOTEM

In MC2 facilities larvae culture was focused in conditions of FT (**Table 5**), with water temperature between 17.5 and 18.8°C and live food based on rotifer and Acartia since 6 to 22 dph. Larval density was between 0.2 and 11.1 larvae l⁻¹ and survival until 22 dph.

STOCK	TRIAL	SPAWN	LARVAE nº	LARVAE DENSITY	MEAN T°	FOOD	SURVIVAL dph	Water System	Tank Vol	TANK COLOUR	TANK SHAPE	AIR	Light
	1	28/03/2018	30000	3	17,5	Enrich rot and Acartia 6-20 dph	20	FT 30 Lh ⁻¹	1000	Black	CYLINDER gently cone-shaped botom	Botom buble	Natural light
	2	02/04/2018	0		18,5	Enrich rot and Acartia 6-20 dph	12	FT 30 Lh ⁻¹	180	White	Cone-bottom, cylindrical tank	Botom buble	Natural light
MC 2	3	07/04/2018	200	0,2	18	Enrich rot and Acartia 6-20 dph	17	FT 30 Lh ⁻¹	1000	Black	CYLINDER gently cone-shaped botom	Botom buble	Natural light
	4	24/04/2018	10000	10	18,5	Rot <6 dph	7	FT 30 Lh ⁻¹	1000	Black	CYLINDER gently cone-shaped botom	Botom buble	Natural light
	5	30/04/2018	2000	11,1	18,8	Enrich rot and Acartia 6-20 dph	19	RAS	6 x 3 l x 2	White	Jars	Botom buble	Natural light

Different culture systems were used in IGAFA (CMRM) facilities (**Table 6**). The best results were achieved with RAS conditions with two batches, one from IEO and another one from MC2 facilities. Water temperature was 17.6 and 17.9°C, in tanks volume of 400 L, without air and natural photoperiod since 7 and 9 dph. Life food was based on rotifer, *Artemia* nauplii and enriched metanauplii with dry microalgae supplemented with arachidonic acid (see D12.1). Both larval batches achieved the weaning period and dry food was provided since 40 dph at the same time that A1. At 48 dph larvae were weaning completely.

Table 6. Larval cultures at CMRM facilities during 2018.

STOCK	TRIAL	SPAWN	LARVAL DENSITY (nº Larv/l)		FOOD	SURVIVAL (dph)	WATER SYSTEM	TANK VOL,	TANK COLOUR	TANK SHAPE	AIR	LIGHT
	1	27-02-18	10,0	16,3	Enrich. Copepod Isoch 11-23 dph	24 DPH	CLOSED	200	WHITE		NO	since 11 dph
	2	02-04-18	13,0	16,9	Enrich. Rot. Araq 13-28 dph. A0 15-28 dph	28	CLOSED	200	WHITE	ROTATION (SMILAR	NO	since 9 dph
	3	22-03-18	10,0	15,9	Enrich Rot control and araq. 9-15 dph. A0 12-17 dph. Enrich A1 control and araq. 17-21	21 DPH	CLOSED	200	WHITE	KREISLER)	NO	NO
IGAFA	4	27-03-18	11,0	15,1	NON	3 DPH	RAS	400	BROWN	FLAT	YES	NO
(CMRM)	5	02-04-18	12,5	17.6	Enrich rot araq 9-17 dph. A0 15-18 dph. Enrich A1 araq. 18-48 dph. Dry food 40DPH until now	ALIVE	RAS	400	BROWN	FLAT	NO	since 9 dph
	6	08-04-18	10,0	15,6	Enrich Rot araq 10-25 dph	25 DPH	RAS	400	BROWN	FLAT	NO	since 10 dph
	7	08-05-18	9,0	19,0	Enrich Rot araq 10-25 dph	4 DPH	CLOSED	200	WHITE	ROTATION	NO	NO
	8	10-05-18	12,5	1/9	Enrich Rot araq. 8-19 dph. A 0 18-23 dph. Enrich araq. Al $$ 23-48 dph. Dry food 40 dph until now.	ALIVE	RAS	400	BROWN	FLAT	NO	since 7 dph

In IGAFA facilities juveniles alive until now were reared at $\pm 18^{\circ}$ C of water temperature, achieving the first results in larval growth (see D18.4).

Conclusions and perspectives:

The mean weight in growth and length during trials at IEO were reflected in the **Fig. 8**. Growth in weight and length were adjusted to a potential regression curves. More data of weight will be needed to achieve a clear conclusion about growth in weight of wreckfish larvae.

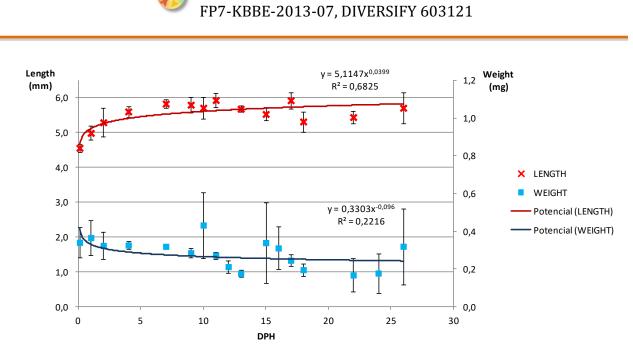


Figure 8. Growth in weight and length of wreckfish larvae from 0 to 26 dph

With data of length obtained in IGAFA facilities until 65 dph, the growth in length of the wreckfish larvae until weaning was knew, increasing from 5.6 mm to 12.8 mm at 5 and 65 dph, respectively (**Fig. 9**).

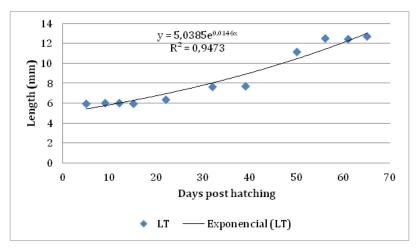
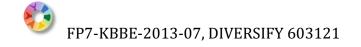



Figure 9. Wreckfish larvae length increasing (mm) from 5 to 65 dph.

Most important advances were made in the feeding sequence with trials in IGAFA (CMRM) in RAS, where the best survival results were obtained so far (Fig. 10).

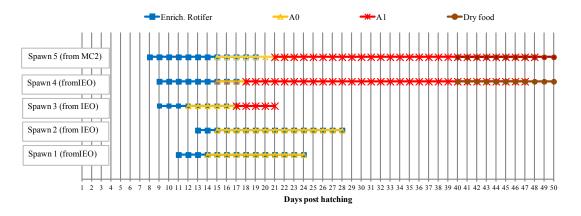


Figure 10. Larval rearing protocol for wreckfish used in the CMRM facilities.

As a result, we can conclude that the optimal feeding sequence for the larval culture of wreckfish in RAS at 12.5 larvae l^{-1} , 17.5-18°C of water temperature, 36.4±1.7th 5°% of salinity and oxygen dissolve bewteen 7.2-8.4 mg. l^{-1} , without air and natural photoperiod since 7-9 dph, was the following:

- Enriched rotifer (arachidonic supplemented): 8-19 dph (4-6 rot.ml⁻²)
- *Artemia* nauplii: 15-23 dph (0.2-0.7 A0.ml⁻¹)
- *Artemia* metanauplii (arachidonic supplemented): 18-48 dph (0.2-0.7 ml⁻¹)
- Dry food: since 40 dph.

Some data about behavior were known during the project:

- Peak of mortality: between 7-11 dph.
- Air vesicles and deformities: since 10 dph (with bubble pump).
- They eat voraciously since 6 dph at 18-19°C (open mouth)
- Remain at the bottom of the tank and through the walls up to 10 dph
- They go up to surface between 7-15 dph where they remain the rest of the time.
- Wreckfish larvae were also characterized by the large size of the yolk sac and the total absorption endogenous reserves last until 20 dph at 17 ± 0.5 °C. The presence of the large yolk sac and the large oil droplet, indicates the presence of a long autotrophic larval stage (see D18.1)

Regarding biochemical profiles of the larvae, first data of fatty acid profile were obtained from 1 dph until 26 dph of larvae to complete the data obtained previously until 10dph. In addition, enrichment products for living prey (rotifers and Artemia) were designed. Two levels of ARA content were used for enrichment product for rotifer and one level of ARA for Artemia and the effect of the new enrichment products on the biochemical composition of rotifers and Artemia was evaluated (see D12.1).

The study of the technical conditions and the adequate parameters regarding the aeration, the flow and form of creating an adequate circulation of water, as well as continue investigating the larval malformations that occur in a high percentage are needs for the immediate future.

Very important results were achieved in larvae feeding sequence in RAS system culture. These data could be the starting point for future experiments and a reality to propose the cultivation of wreckfish as a possibility as diversification of aquaculture

Concluding, the perspectives regarding wreckfish larval rearing are very encouraging, thinking about in new useful species for the aquaculture with very good perspectives of future. The increase of our knowledge of this species in the larval and juvenile period could be very interesting for subsequent studies.

References

Álvarez-Blázquez, B., Vilar, Papandroulakis, C.A, Linares, F., Cal, R., Rodríguez, J.L., Lluch, N., Gómez, C., Pérez, E., and and Peleteiro J.B. (2016). First experiences of wreckfish (Polyprion americanus) larval husbandry in NW Atlantic and East Mediterranea. Aquaculture Europe 2016 (EAS), September 2016. Edimburg. United Kingdom.

Ball, A.O., Sedberry, G.R., Zatcoff, M.S., Chapman, R.W., Carlin, J.L., 2000. Population structure of wreckfish *Polyprion americanus* determined with microsatellite genetic markers. Mar. Biol. 137: 1077-1090.

Kentouri M., Papandroulakis N & Divanach P. 1995. Species diversification in Greek finfish mariculture. Cah. Options Mediterr 14: 129-136.

Papandroulakis N, Divanach P and Kentouri M. 1997. Specific diversification in finfish mariculture: the Mediterranean case. Proceeding of the International Conference Martinique Special Publication EAS pp 223-224.

Papandroulakis N, M. Suquet, M.T. Spedicato, A.Machias, C. Fauvel and P Divanach. 2004. Feeding rates, growth performance and gametogénesis of wreckfish (Polyprion americanus) kept in captivity. Aquaculture International 12: 395-407

Peleteiro, J.B., Saavedra Penas, C., Pérez Rial, E., Álvarez-Blázquez, B., Soares, E.C., Vilar Perón, A., 2011. Diversificación de especies en acuicultura. Estudio preliminar de la reproducción de la cherna (*Polyprion americanus*) en cautividad, Congreso Nacional de Acuicultura, Castelldefels, Spain

Sedberry, G.R., Andrade, C.A.P., Carlin, J.L., Chapman, R.W., Luckhurst, B.E., Manooch, C.S. III, Menezes, G., Thomsen, B., Ulrich, G.F., 1999. Wreckfish *Polyprion americanus* in the North Atlantic: fisheries, biology and management of a widely distributed and long-lived fish. American Fisheries Society Symposium. Life in slow lane: ecology and conservation of long-lived marine animals, n°23, pp. 27-50

Co-funded by the Seventh Framework Programme of the European Union

