

Spawning protocol:

- Size or age at first maturity -> 8kg wild 5-6 kg in culture
- The period of gametogenesis, and environmental conditions during the period - Winter - Spring 15+ °C feeding sardines, squid and Skretting vitalis-reprod
- The spawning period, and environmental conditions during the period spring-summer 16-23 °C optimal 18-20°C
- Information hormonal induction of spawning.
 - Induction date March-September
 - Characteristics of fish 6-30 kg
 - Oocyte Size -> 0.56 mm
 - Hormone and dose. Single injection GnRHa 15 μg / kg
 - Spawn details: 0.2-3.5 million / spawn (mean 1.7 million) fertilization > 80%
- Latency Period 48-72 hours (from application)
- Types of eggs 0.9-1 mm pelagic
- Fecundity data 282.000 to 498.000 per kg (130,000 per induced spawning)

Introduction: State of the art

Introduction: Bottlenecks

Need for breeding programs.

Tools for the implementation of breeding programs

Reproductive control

To produce families from selected breeders that have the desired phenotype for future generations

Diversify examined 2 approaches:

PRODUCE DESIRED FAMILIES FOR GENETIC BREEDING PROGRAMS

PAIRED BREEDING WITH A CROSS MATING DESIGN

IN VITRO FERTILIZATION

INDUCED SPAWNING OF PAIRED MEAGRE (ARGYROSOMUS REGIUS) WITH MALE ROTATION: AN APPROACH TO PRODUCE MULTIPLE FULL AND HALFSIB FAMILIES FOR GENETIC BREEDING PROGRAMS

DIVERSIFY - EU PROJECT

Neil Duncan¹, Constantinos C. Mylonas²,
Ioannis Fakriades²,
Edwards Milton Sullon¹, Zohar Ibarra-Zatarain¹, Marco Chiumento¹
and Olinser Aviles Carrillo¹

¹IRTA Sant Carles de Rapita, Tarragona, Spain. neil.duncan@irta.cat ²Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Iraklion, Crete 71003, Greece

INDUCED SPAWNING OF PAIRED MEAGRE

Aquaculture 495 (2018) 506-512

Contents lists available at ScienceDirect

Aquaculture

journal homepage: www.elsevier.com/locate/aquaculture

Paired spawning with male rotation of meagre *Argyrosomus regius* using GnRHa injections, as a method for producing multiple families for breeding selection programs

Neil J. Duncan^{a,*}, Constantinos C. Mylonas^b, Edwards Milton Sullon^a, Dimitris Karamanlidis^{b,c}, Maria Claudia França Nogueira^{b,d}, Zohar Ibarra-Zatarain^{a,e}, Marco Chiumento^a, Ricardo Olinser Aviles Carrillo^a

^a IRTA, Sant Carles de la Rapita, 43540 Sant Carles de la Rapita, Tarragona, Spain

^b Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, P.O. Box 2214, Iraklion, Crete 71003, Greece

^c University of Crete, Department of Biology, Boutes, Iraklion 71409, Crete, Greece

d Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC Cx. P 476 CEP 88034-000, Brazil

^e CONACyT-UAN-Nayarit Centre for Innovation and Technological Transference, Av. Emilio M. González s/n, C.P. 63173, Tepic, Mexico

An experiment that examined the maximum number of spawnings in response to weekly GnRHa injections (HCMR in 2014)

Four experiments to examine paired spawnings with male rotation on a weekly basis (IRTA in 2014 and 2015; HCMR in 2015)

Common methods, induced spawning:

- 1.Females , > 550 μ m oocytes induced with single injection 15 μ g / kg GnRHa 2.Males with sperm, either:
 - single injection 15 μ g / kg GnRHa, single injection 7.5 μ g / kg GnRHa or implant ~ 50 μ g / kg GnRHa

Common methods, egg quality:

- 1. Count number of eggs spawned, volumetric sub-samples
- 2. Fertilization, from egg (n>100) development when collected
- 3. Hatching and 5 day larval survival in 96 well plates, 2 plates / spawn

Results: Fecundity

- 1st spawn (2 d after injection)
- □ 2nd spawn (3 d after injection)
- 3nd spawn (4 d after injection)

- Fertilization 1st spawn
- Fertilization 2nd spawn
- ★ Fertilization 3rd spawn

Results: Egg quality

High fertilization

High hatching %

High 5 day larval survival

Conclusion

Pairs of meagre can be induced to spawn high quality and quantity of eggs on a weekly bases for up to 17 weeks

Four experiments to examine paired spawnings with male rotation on a weekly basis (IRTA in 2014 and 2015; HCMR in 2015). In total 18 selected males were crossed with 21 selected females.

Repeat each week to pair each male with each female

Results: Egg quality

High fertilization

High hatching %

High 5 day larval survival

Results: Fecundity

Significant decline in fecundity

Results: Fecundity

Two pairs did not spawn after 4th injection of GnRHa Data from HCMR

Significant decline in fecundity

Conclusion

Paired spawning of meagre was possible for the production of known families from parents with known phenotypes

The success of spawning pairs with male rotation was 76% to produce 61 families (full and half-sib) that had >200,000 good quality eggs.

Conclusion

Females produce 3 half-sib families before problems with maturity status

Males more flexible and did not lose maturity status

Conclusion

A successful "proof of concept" for the paired spawning approach, highlighting the both the positive potential of the approach and possible drawbacks

Co-funded by the Seventh Framework Programme of the European Union

Co-funded by the Seventh Framework Programme of the European Union

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration (KBBE-2013-07 single stage, GA 603121, DIVERSIFY).

Thank you, for all technical help In HCMR and IRTA

Protocol for the strip spawning of meagre females and in vitro fertilisation

Sandra Ramos (IRTA), Neil Duncan (IRTA), Christian Fauvel (IFREMER), Gilberto Dutto, (IFREMER), Wendy Gonzalez, (IRTA).

DIVERSITY, Work Package 2 – Meagre Reproduction

Task 2.4 Development of in vitro fertilization methods for planned crosses

Deliverable 2.7 Protocol for the strip spawning of meagre females and in vitro fertilization

DEVELOP A PROTOCOL FOR ARTIFICIAL FERTILIZATION BY:

- 1. **Sperm analysis** Describing quantitative sperm parameters useful for quality assessment before and after hormonal treatment.
 - Concentration
 - Initial motility
 - Initial velocity
 - Variation of motility and velocity after sperm activation
- 2. **EXPERIMENT 1** Determining the optimum time at which the egg is ready to be fertilized, establishing the time of ovulation after hormonal treatment.
- 3. **EXPERIMENT 2** Establishing the optimal sperm:egg ratio.

Breeder selection

by the maturity status

Anaesthesia (70.6 mg/L MS-222)

 Selected females: Oocytes in full vitellogenesis (diameter >550 μm)

Breeder selection

by the maturity status

 Selected females: Oocytes in full vitellogenesis (diameter >550 μm)

Release of sperm by abdominal pressure

Males in a spermiation stage of 2 and 3

0 = not fluent

1 = fluent but no sample can be obtained

2 = fluent

3 = very fluent)

Total: 14 females 20.45 ± 6.22 kg Total: 5 males 15.94 ± 2.75 kg

Sperm analysis

Sperm analysis

- Before and after hormonal treatment.
- 10 μ L, 20 μ L, 40 μ L aliquots of diluted sperm in Leibovitz L-15 cell culture medium modified (1:4) + 1 mL of sea water with BSA (6.6 mL BSA/100mL sea water) in Eppendorf tubes for activation.
- 1 μL sample immediately pipetted into ISAS counting chamber.

Video recorded and sequences analysed with the Computer Assited Sperm Analysis (CASA) plugin, with open source software Image J.

- Duration of sperm motility (min)
- Initial sperm motility (%)
- Initial average path velocity (VAP, μm/s)
- Variation of motility and VAP after activation
- Using a THOMA cell chamber,
- sperm concentration (nº spzoa/mL of milt)

SPERM CHARACTERISATION ♂

BEFORE vs AFTER HORMONAL TREATMENT

Before/ after GnRHa	Sperm concentration	Sperm	Initial motility	Initial VAP
injection	(spermatozoa/ mL)	duration (min)	(%)	(μm/s)
Before	3.21·10 ¹⁰ ± 1.18 ^a	1.71 ± 0,29a	48.17 ± 2.80a	90.69 ± 5.76a
After	2.76·10 ¹⁰ ± 0.62 ^a	1.57 ± 0.50a	66.76 ± 15.83a	98.07 ± 11.68 ^a

Sperm storage

- Cryopreserved: Leibovitz plus10% dimethyl sulfoxide (DMSO)
- Stored 1:4 in Leibovitz for 24 hours
- Fresh sperm

SPERM CHARACTERISATION ♂

SHORT TERM STORAGE

Analysis time (h)

■ 10:30 h (fresh sperm)

■13:30 h

■ 17:30 h

Sperm was successfully stored in Leibovitz culture medium for 7 h with no loss of fertilisation ability compared to fresh sperm.

After 35 hours until ovulation was detected

EXPERIMENT 1: TIMING OF OVULATION

- Received abdominal massages every 2 and ½ hours.
- Time of ovulation= time ovulated eggs
 were first detected.

Sperm collection

- Diluted in Leibovitz.
- Stored above ice until required.

AGROALIMENTARIA

MATERIAL AND METHODS

After 35 hours until ovulation was detected

EXPERIMENT 1: TIMING OF OVULATION

- Received abdominal massages every 2 and ½ hours.
- Time of ovulation= time ovulated eggs were easily stripped.

collection

- Diluted in Leibovitz.
- Stored above ice until required.

Sperm

- **Duplicates**
 - Batches of eggs were incubated (17,8 °C to 18,4 °C) during 30h
- 400 eggs/incubator were examined under a binocular
- **SURVIVAL RATE** (% of number of eggs with embryos)

9-10 h after

females

EXPERIMENT 1: TIMING OF OVULATION

Ovulation between 35-39 hours

EXPERIMENT 2: SPERM:EGG RATIO

FERTILIZATION

- Carried out at different sperm concentration (number of sperm ranged from 2,675,000 to 407,500,000)
- 100 mL of sea water was added for activation.
- 200 mL added for the early embryonic development stages.

- After 2 hours: content poured onto a 200µm sieve and
- **FERTILIZATION RATE** of 100 randomly selected eggs from each beaker.

both floating and sinking eggs placed into a petri dish.

EXPERIMENT 2: SPERM:EGG RATIO

- No significant differences (P > 0.05) in the F.R. between males.
- Significant differences (P < 0.05) between females (different egg quality).
- Combined data in each female to obtain regressions.

Sperm/egg ratio

PROTOCOL FOR THE ARTIFICIAL FERTILISATION OF MEAGRE

- The broodstock should be examined at 38 h post-injection at 18°C to obtain optimum egg quality.
 - For conventional production, a minimum of 200,000 spermatozoa per egg is recommended to ensure high fertilisation rates.
- The application of GnRHa should be recommended to induce males to extend sperm motility and velocity and facilitate sperm collection, especially towards the end of the spawning season.
- Similar protocols used in hatchery to make crosses: 3 females each with 40 males for a breeding program

Thanks to work in Ifremer and IRTA

Diversify examined 2 approaches:

PRODUCE DESIRED FAMILIES FOR GENETIC BREEDING PROGRAMS

PAIRED BREEDING WITH A CROSS MATING DESIGN

- Successful paired spawning
- 3 half-sib families / female
- High fecundity multiplication
- · Based on normal induce spawning

IN VITRO FERTILIZATION

- High number of families
- Less period of time
- Gamete management defined
 - Sperm and eggs

