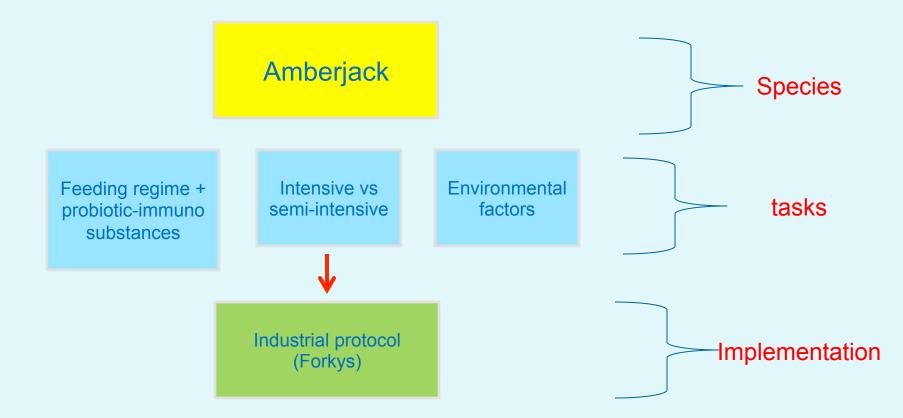

Larval Husbandry (WP14-19)

RTDs: IOLR, IRTA, ULL, HCMR, FCPCT, IEO, DTU, IMR, NIFES,

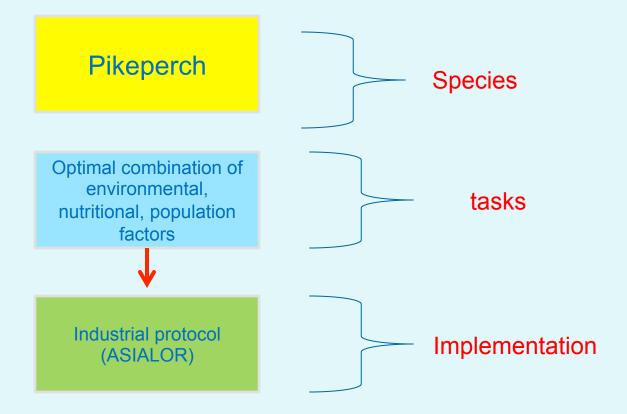
SMES: FORKYS, ASIALOR, SWH, CMRM, MC2, DOR

Meagre strategy



WP14 Meagre			
Tasks	Evaluation	Sub-tasks	Deliverable
14.1 (IRTA)- effective weaning period (with or without probiotics)	•Growth, survival, size dispersion, j. quality, composition, pancreatic and intestinal enzymes (ULL)		<u>D14.1</u> Improved larval protocol

Greater amberjack strategy



WP15 Greater Amberjack Tasks	Evaluation	Sub-tasks	Deliverable
15.1(IEO) Effect of feeding regime (conc. and freq.) and probiotics	 Survival, growth, development, deform., nutr. Cond (IEO) oxid. Stress, antiox. Defense enzymes, immune syst.(IEO). Ontogeny of DT enzymes(ULL) 		D15.2 feeding protocol and use of immune modulators
15.2 (HCMR) intensive vs semi- intensive systems	•Ontogeny of visual system, oxid. Stress, somatotropic axis, antiox. Defense enzymes , immune syst. (HCMR)	15.2.1 (HCMR) RAS vs Mesocosm 15.2.2 (FCPCT) Stocking density	<u>D15.1</u> Effective stocking densities <u>D15.4</u> Ontogeny of visual and digestive system
		15.2.3 (ULL) Ontogeny of D.T.	
15.3 (FCPCT) Environmental parameters	•Growth, survival, histology, b. comp, deform, stress+skeletal gene exp.,J. quality, size distribution,	15.3.1 (FCPCT) Tank hydrodynamics	<u>D15.3</u> Optimum hydrodynamics and light conditions.
	somatotropic axis (FCPCT)	15.3.2 (HCMR) Light intensity and duration	
15.4 (IEO) Development of Industrial protocol	 Survival, growth, development, deform., nutr. Cond. oxid. Stress, antiox. Defense 	15.4.1 (IEO) Development of industrial protocol from results	D15.5 Industrial protocol
	enzymes, immune syst.	15.4.2 (FCPCT) Ossification	
	Interval sampling for ossification patterns and skeletal deformities.	patterns and skeletal deform. at different levels of intensification	
		15.4.3 (FORKYS) validation at SME	

Pikeperch strategy

WP16 pikeperch

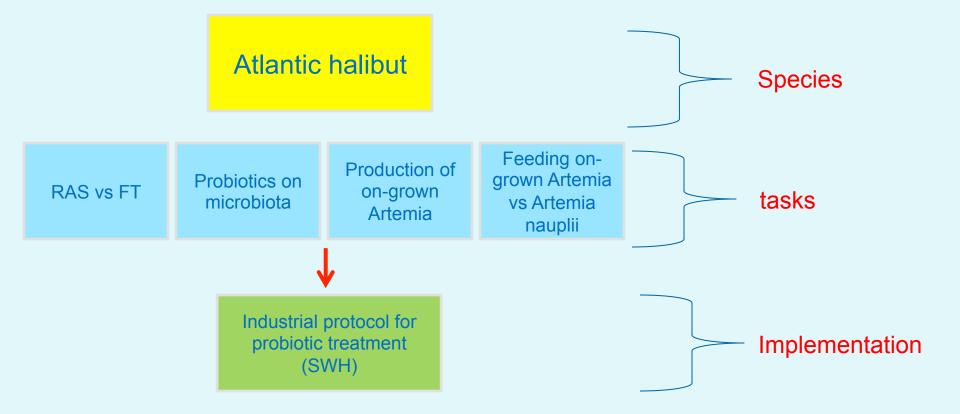
Tasks

16.1 Optimalcombination of factors forimproved larval rearing16.2 Development ofindustrial protocol

Evaluation

(UL, DTU) Effects of multifactorial designed experiments to test various factors (environ+nutritional+population), singly, in combination and interaction in terms of

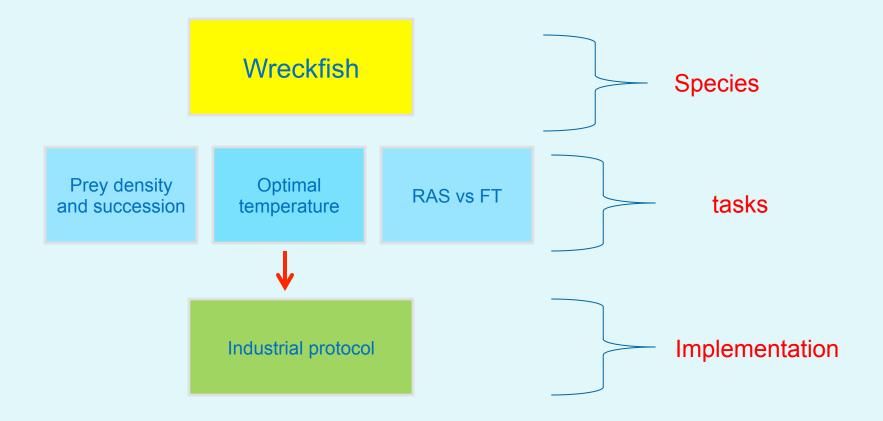
- cannibalistic behavior, larval morphogenesis (DTU),
- ontogeny of skeleton, skeletal deform (IRTA).,
- gene expression of transcription factors, signaling molecules, ECM of skeletal system, digestive hormones (?)


Tested by SME ASIALOR

Sub-tasks Deliverable

D16.1 Effect of environmental factors on larval rearing D16.2 Effect of nutritional factors on larval rearing D16.3 Effect of population factors on larval rearing 16.4 Identification of optimal combinations of factors 16.4 Evaluation of selected combinations under farm conditions. 16.5 Industrial protocol for pikeperch larval rearing

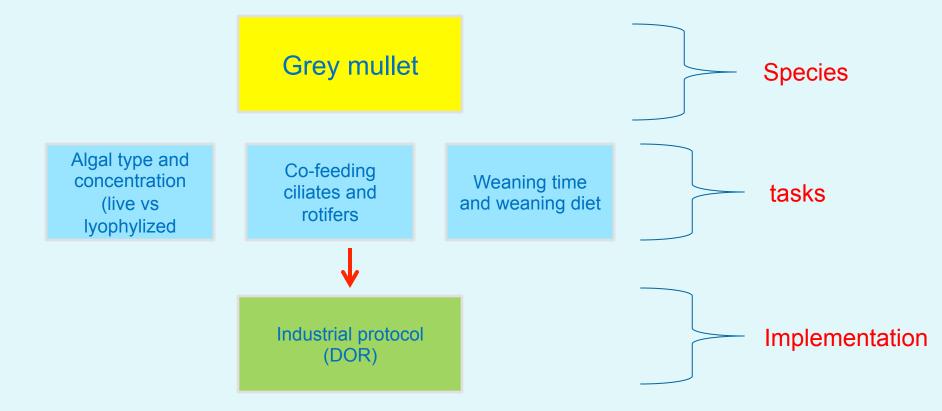
Atlantic halibut strategy



WP17 Atlantic halibut

Tasks	Evaluation	Sub-tasks	Deliverable
17.1 Recirculation vs	•Growth, survival,		D17.1 Production
Flow through (IMR)	pigmentation, eye	Based on results from	protocol of on-grown
17.2 (IMR) Effects of	migration (IMR, SWH),	17.1, 17.2, full scale trial	Artemia.
probiotics on larval	•Gut morphology (NIFES)	performed and industrial	D17.2 Determne if RAS
microbiota, survival and	 Digestive physiology 	protocol for probiotic use.	more effective than FT
development of industrial	(ULL-WP11)		D17.3 Effect of probiotics
protocol	 Bacterial flora (IMR). 		on larval microbiota and
17.3 (IMR, SWH)	 Nutrient analysis 		survival
Production of on-grown	(NIFES)		D17.4 Comparison of
Artemia	 Feeding, washing, 		feeding on-grown Artemia
17.4 (NIFES, ULL) On	disinfection of Artemia		vs Artemia nauplii on
grown Artemia vs Artemia	(IMR, SWH)		larval performance
nauplii until end of			D17.5 Industrial protocol
metamorphosis			for probiotic treatment of
			larvae.

Wreckfish strategy



WP18 Wreckfish			
Tasks	Evaluation	Sub-tasks	Deliverable
 18.1 Development of feeding methodology (HCMR)- prey densities and succession of prey type 18.2 Defining optimum conditions for larval rearing (IEO, MC2) 	 Ontogeny of larval DT and visual system. Ontogeny of DT enzymes Growth, larval quality, (HCMR, IEO) Growth survival, larval quality, size(IEO, MC2) Larval biochemical profile (protein, lipids, EFA), biometric analysis, survival. (IEO, CMRM) 	18.2.1 Testing the effect of two temperature ranges (14-17 and 19-22 °C 18.2.2 Test RAS (CMRM) vs FT (IEO)	D18.1 Development of the DT of larval wreckfish D18.2 Determine optimal temperature conditions for rearing larval wreckfish D18.3 Develop a feeding protocol for wreckfish larvae D18.4 Determine the most effective culture system (RAS vs FT)

Grey mullet strategy

WP 19 Grey mullet

Tasks

Evaluation

19.1 Effect of algal type and concentration on larval performance (IOLR)

19.2 Comparing selected algal protocol with lyophilized algae (IRTA)

19.3 Determine the effect of co-feeding ciliates and rotifers on DT maturation and enzyme production (IOLR, Zoopt)

19.4 Determine weaning time and weaning diet based on shift from carnivorous to herbivorous feeding Ingest. rate, growth survival, body comp., metamorphic synchrony, ontogeny of DT (IOLR,?)

•Growth, survival, ingest. Rate, body comp., matur. of DT, skeletal deformities (IRTA)

•Gene expression of alk. Phosphatase and PepT1, growth, survival, FAA, BAA, FA (IOLR)

Gene expression of Alk. Ph., PepT1,growth, survival, FA (IOLR)
Alk. Prot., amylase, lipase, trypsin, pepsin, alk. Ph., cytosol enz. (leu-ala pept.) (IRTA)

Sub-tasks

19.1.1 Determine algal type (Nan. Vs Iso) and concentr.
in larval rearing
19.1.2 benefit of algal
addition due to back-lighting or other factors
19.1.3 weaning diets varying in protein, cho, lipid at
suggested weaning time and weaning diet change

Deliverable

<u>D19.1</u> Determine the most effective algal type and concentration

<u>19.2</u> Evaluate effectiveness of replacing live algae with lyophilized algae

<u>19.3</u> Effect of co-feeding rotifers and ciliates

<u>19.4</u> Determine weaning time and weaning feed according to shift from carnivorous to omnivorous feeding.

<u>19.5</u> Evaluate an improved grey mullet larval rearing protocol in commercial hatchery

19.5 Testing improved larval rearing protocol in commercial hatchery (DOR)

•Growth, survival

Common Themes in Larval Husbandry GWP

- Intensive vs extensive system (mesocosm)
- Tank greening and algal selection
- Improving live food performance
- Prey densities and feeding frequencies
- Effect of probiotic-immunstimulant substances
- RAS vs FT
- Environmental conditions on larval rearing
- Advancing weaning period