

GWP Grow out Husbandry WP20-23

Nikos Papandroulakis, HCMR

Kick-off meeting Heraklio, 29-30 January 2014 v

... DIVERSIFY will address the main documented species specific bottlenecks in the production of the selected species, in order to **develop** adequate husbandry practices and technologies for the industry to enable production (greater amberjack and wreckfish) or to optimize production (meagre, pikeperch, Atlantic halibut and grey mullet)...

cosmopolitan species....

- large size and fast growth, potential of rearing in sea cages -especially offshore (meagre, greater amberjack),
- freshwater fish of high demand for RAS culture (pikeperch),
- cold-water of the sub-arctic northern Europe (Atlantic halibut)
- euryhaline warm-water suitable for extensive

aquaculture.

Structure of the GWP

- WP 20: Meagre
- WP 21: G. amberjack
- WP 22: Pike perch
- WP 23: Grey mullet

Methodology (general)

- Trials in tanks and cages
- Evaluation with
 - growth performance
 - hematological, biochemical, immunological, hormonal evaluation
 - behavior (distribution in cages)
 - □ health status
 - ☐ feed efficiency
 - □ juvenile quality morphological aspects
 - □ resistance to infectious diseases

WP 20. Meagre

- Technologies and practices used for grow out, similar to those for gilthead sea bream and European sea bass
- Meagre is different in
 - growth rates
 - feeding and spatial behaviour in the cage
- Species-specific husbandry practices and methods can improve the performance

- The objectives of this WP are
 - development of method to avoid size variability in juveniles
 - development of feeding method respecting the specific behaviours of meagre
 - modification of applied methodologies for cage culture to maximize the performance

Task 20.1

Size variability at juveniles

- Difference in growth depends on genetic origin?
- □ Potential of low-growth fish for compensatory growth?
- Tank experiments at juvenile stage
 - Genetic characterization of juveniles for parental assignment
 - Growth studies
 - Economic analysis
- Result:
 - □ identification of causes
 - Development of methodology
- Implementation: IRTA, HCMR

Task 20.2

Effect of rearing environment

- □ Which is proper environment for meagre rearing?
- Trials for cage depth
- Trials for light intensity
 - Two size groups [(200 600g) and (800-1500g)]
 - □ Duration 8+8 months
 - Monitoring
 - growth performance
 - hematological, biochemical, immunological, hormonal evaluation
 - behavior (distribution in cages)
- Result:
 - ☐ Definition of optimal depth
 - □ Definition of optimal light intensity

Implementation: HCMR, Argosaronikos SA

Task 20.3

Development of feeding methodology

- □ Is the feeding method applied adequate for meagre?
- Can we develop an "industrial" feeding system?
- Test in tanks
 - □ 2 different size groups [(50 100g) and (700-900g)]
 - □ different feeding stimuli
 - □ different feeding methods
- Test in cages
 - 2 feed distribution methods from the surface and from the bottom (HCMR)
 - □ Comparison hand feeding with demand type industrial (MAREMAR)
- Result: Development of feeding system for industrial appli
- Implementation: HCMR, IRTA Argosaronikos SA, CULMAREX SA

Deliverables

- □ D20.1 Methodology to avoid size variability in meagre juveniles (P, Re, 24)
- □ D20.2 Definition of the optimum conditions for cage culture of meagre (P, Re, 39)
- □ D20.3 Methodology for meagre feeding (P, Re, 42)

Budget

□ HCMR: 231,679€

□ IRTA: 123,506€

□ ARGO: 120,000€

□ CULMAREX: 82,500€

■ Time frame

	Ye	Year 1 (2014)				ear 2	(201	5)	Υє	ear 3	(2016	3)	Υe	ear 4	(201	7)	Year 5 (2018)			
	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De
	3	6	9	12	15	18	21	24	27	30	33	36	39	42	44	48	51	54	57	60
WP20 Grow out husbandry-meagre																				
Task 20.1 Size variability at juveniles																				
Task 20.2 Effect of rearing environment																				
Task 20.3 Development of feeding methodology																				

WP21. Greater amberjack

- Preliminary data for grow out of greater amberjack suggested that growth performance is high
- Further studies are required to
 - Develop rearing method in cages
 - adequate volume and
 - test the application of submersible cages
 - Develop feeding methods
 - Develop appropriate husbandry practices
 - specific thermal ranges for optimal growth and health,
 - optimum rearing density

Task 21.1

Development of rearing method in cages

- Which is the proper volume (depth) of cages?
- □ Can we use submerged cages?
- Trials in commercial cages (10m and 6m depth); 12 months; monitoring
 - growth performance
 - muscle quality,
 - hematological, biochemical, immunological and hormonal evaluation
- Trials in commercial cages (20m diam; 10m depth); 12 months; monitoring
 - growth performance
 - health status
- Result
 - definition of optimal depth
 - definition of optimal technology
- Implementation: FORKYS, CanexMar, FCPCT, HCMR

Task 21.2

Development of feeding methods

- Do we feed properly the greater amberjack?
- Which is the feeding pattern
- Test in tanks for 4 months with fry (5g) and juveniles (200g)
 - □ different feeding methods (continuous vs fix ratios)
 - □ Estimation of daily rhythm and frequency
 - Monitoring
 - growth performance
 - feed efficiency
 - k index
 - juvenile quality morphological aspects
 - hematological, histological, biochemical and immunological
- Result: definition of optimal feeding method feeding pattern
- Implementation: IEO , FCPCT

Task 21.3

Development of appropriate husbandry practice

- Which is the optimum temperature range?
- Which stocking density is optimal?
- Test in tanks for 4 months with individuals of 5g and 200g
 - 2 different temperature ranges 14-17 °C and 26-29 °C
 - Monitoring
 - growth performance,
 - feeding activity
 - gut transit time
 - digesta sample analysis (protein, fat, dry matter, apparent digestibility, energy)
 - protease, trypsin, chymotrypsin, lipase enzyme activities
- Result: definition of optimal rearing temperature
- Implementation: FCPCT; HCMR

Task 21.3 (cont.)

Development of appropriate husbandry practice

- □ Which stocking density is optimal?
- Test in tanks for 4 months with individuals of 5g (500L) and 150g (4000L)
 - □ 3 different stocking densities
 - Monitoring
 - growth performance,
 - feed efficiency,
 - k index
 - quality including morphological aspects,
 - hematological, histological, biochemical and immunological studies
 - oxidative stress enzymes
- Result: definition of optimal rearing density
- Implementation: IEO, ULL

Deliverables

- D21.1 Definition of optimum feeding methods for greater amberjack grow out (R PU 42)
- □ D21.2 Definition of optimum conditions for cage culture of greater amberjack (R PU 57)

Budget

- □ HCMR: 45,000€
- □ FCPCT: 95,000€
- □ IEO: 60,000€
- □ ULL: 15,000€
- □ FORKYS: 65,096€
- □ CANEXMAR: 100,000€

Time frame

		Year 1 (2014)			Ye	ar 2	(201	5)	Year 3 (2016)				Year 4 (2017)				Year 5 (2018)					
		Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма
		3	6	9	12	15	18	21	24	27	30	33	36	39	42	44	48	51	54	57	60	63
WP21	Grow out husbandry-greater amberjack																					
	Task 21.1 Development of rearing method in cages																					
	Task 21.2 Development of feeding methods																					
	Task 21.3 Development of appropriate husbandry practice																					

WP 22. Pike perch

- Bottlenecks (by SMEs)
 - unpredictable depression of growth
 - management manipulations are followed by high mortalities
- Reasons
 - high stress responsiveness to intensive culture conditions
 - use of pikeperch broodstock of various domestication levels, including wild populations
- Studies are required
 - □ Effect of husbandry practices and environment
 - farm conditions
 - Effect of domestication level and geographical origin

Task 22.1

Effect of husbandry practices and environmental factors on pikeperch immune and physiological status

- □ Which are the main stressful factors for pikeperch?
- ☐ How the fish respond to stress?
- Trial for 8-12 months with juveniles (80-100 g)
 - Expose to various husbandry practices and environmental conditions
 - 8 factors (2 modalities per factor, using 16 experimental units).
 - light, rearing density, handling, sorting, T, S, pH, TAN, NO₂-N, NO₃-N, O₂, tank, rearing system
 - Monitoring
 - physiological stress responses, immune competence and global resistance to infectious diseases.
 - physiological and immune parameters and associated mortality,
- Result: identify an optimal combination of environmental
- Implementation: FUNDP, DTU, UL, ASIALOR

Task 22.2

Characterization of pikeperch immune and physiological status in farm conditions

- □ Are the results applicable in farm conditions?
- Comparative rearing of 2 or 3 batches (10 g to 1.5 kg) in farm conditions for 2 years
 - Monitoring on monthly base
 - Growth and physio- immunological status
- Result: best practice for rearing of pikeperch
- Implementation UL, FUNDP, ASIALOR

Task 22.3

Effect of pikeperch domestication level and geographical origin on stress sensitivity

- How the level of domestication affect the stress response?
- Investigate the effects of domestication (wild vs domesticated strains)
 and geographical origin (freshwater vs brackish water strains)
 - □ Different batches of juveniles from larval stage in similar conditions
 - 3 or 4 different geographical origins,
 - 1 or 2 populations of the same geographical origin with 2 levels of domestication
 - Monitoring the genetic variability
 - physiological stress responses,
 - immune competence
 - global resistance to infectious diseases
- Implementation: UL, FUNDP, DTU, ASIALOR

Deliverables

- □ D22.1 Effects of multiple variables on stress, immune response and growth performances and recommendations of optimal conditions for pikeperch grow out (R PU 24)
- □ D22.2 Validation of optimal rearing variables under commercial farm conditions (R PU 42)
- □ D22.3 Effects of domestication level and geographical origin on stress, immune response and growth performances and strain recommendation (R PU)

Budget

□ UL: 131,000€

☐ FUNDP: 161,008€

□ DTU: 101,779€

□ ASIALOR: 73,125€

Time frame

		Year 1 (2014)			4)	Year 2 (2015)				Year 3 (2016)				Year 4 (2017)				Year 5 (2018)				
		Ма	Ju	Se	De	Ма																
		3	6	9	12	15	18	21	24	27	30	33	36	39	42	44	48	51	54	57	60	63
WP22 Grow	w out husbandry-pike perch																					
	22.1 Effect of husbandry practices and environmental factors on pike h growth, immune and physiological status																					
	22.2 Characterization of pike perch growth, immune and physiological is in farm conditions																					
	22.3 Effect of pike perch domestication level and geographical origin rowth and stress sensitivity																					

WP 23. Grey mullet

Evaluating the geographic range for grow-out of mullet in the Mediterranean basin

- Most grey mullet are reared extensively in polyculture systems
- Exists an established market (North Africa) and a growing one in the Med,
- Intensive monoculture has to be developed

- © NIWA
- Evaluating the geographic range for grow-out of grey mullet in the Mediterranean basin,
- Determine the cost-benefit of different weaning diets on the performance and health status of juvenile grey mullet.

Task 23.1

Determine the cost-benefit of different weaning diets on the performance and health status of wild juveniles

- Which is the optimum weaning methodology?
- Test in tanks with wild juveniles following an adaptation period
 - the efficacy of different weaning diets in terms of
 - Different weaning strategies
- Monitoring
 - □ fish growth, survival maturation of digestive system, health status
 - economic efficiency.
- Result: recommendation of best weaning diet
- Implementation: IRTA

Task 23.2,3,4

Feeding an improved diet in monoculture

- □ Which are the appropriate conditions of rearing?
- Test in cement (IL, GR), and earthen (IS, SP) ponds
 - □ Two stocking densities
 - 0.5 and 1 juvenile m⁻² for earthen ponds
 - 4 and 6 juvenile m⁻² for cement ponds
 - □ Using wild (GR, SP) or F1 (IL) juveniles
 - Monitoring
 - growth (FCR, PER, SGR)
 - survival
 - lipid class and fatty acid composition of selected tissues
- Result: best grow out management practice
- Implementation: IOLR, IRTA, HCMR, CTAQUA, DOR, GEI, IRIDA

Deliverables

- □ D23.1 Cost-effective weaning strategies for wild-caught grey mullet grow out and their effect on growth and health status (R PU 18)
- D23.2 Stocking protocols for pond monoculture grow out of F1 and wild caught grey mullet (R PU 30)
- □ D23.3 Comparison of the project's improved grey mullet grow-out feed under the different environmental and water conditions in Israel, Greece and Spain (R PU 40)

Budget

□ HCMR: 20,000€

IRTA: 25,000€

IOLR: 20,000€

□ CTAQUA: 20,071€

□ DOR: 30,000€

□ GEI: 32,400€

IRIDA: 45,600€

■ Time frame

		Year 1 (2014)				Year 2 (2015)				Ye	ar 3	(201	6)	Year 4 (2017)				Year 5 (2018)				
		Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма	Ju	Se	De	Ма
		3	6	9	12	15	18	21	24	27	30	33	36	39	42	44	48	51	54	57	60	63
WP23	Grow out husbandry-grey mullet																					
	Task 23.1 Determinve the cost-benefit of different weaning diets																					
	Task 23.2 Compare the effect of feeding an improved grey mullet diet																					
	Task 23.3 Compare the effect of feeding an improved grey mullet diet																					
	Task 23.4 Compare the effect of feeding an improved grey mullet diet																					

- The SMEs involvement
 - □ A challenge

