

Reproductive performance of farmed and wild-caught halibut

Birgitta Norberg, Børre Erstad, Jone Bjelland, Walter Olsen-Ryum, Margareth Møgster, Ragnfrid Mangor-Jensen, Sara Olausson, Jeanette Veivåg, Francois Chauvigné, Joan Cerda, Kristin Hamre, Anders Thorsen, Dinos Mylonas

Objective

- Improve fecundity and gamete quality in F1/F2 broodstock.
 - Better selection of broodstock
 - Optimize spawning performance

Background

 Reproductive dysfunctions in captive animals, especially the first generations,

captive breeding

have been reported

Approach

- Farmed female halibut (2007-generation) were compared with wild-caught females
- All fish were held in the same tank and given the same food
- Biometric data, fecundity, egg and larval quality, and plasma homrone prfiles ere compared.

Biometric and spawning performance data of wild-caught and farmed female halibut

	Wild-caught females	Farmed (F1) females
n	3 (4 ^a)	5
length (cm)	150.7 ± 6.2	113.4 ± 3.9
weight (kg)	48 ± 5.7	$19.2 \pm 2.3*$
number of batches ·female ⁻¹	7.3 ± 0.6	9.4 ± 1.7
spawning interval (hours)	82.2 ± 8.4	72.4 ± 22.9
batch volume (mL)	2300 ± 900	$700 \pm 300*$
total fecundity (mL·female ⁻¹)	16700 ± 420	$6800 \pm 130*$
relative fecundity (mL·kg ⁻¹)	347 ± 70	349 ± 84
average fertilization (%)	89 ± 7	61 ± 29

^a One wild-caught female was left undisturbed for most of the season, due to a large skin lesion, and was not included in calculations.

^{*}Significant difference (P<0.05; Mann-Whitney U-test)

Egg diameter

Egg viability in wild-caught and farmed females

Fertilized
Dead
Unfertilized

In all females, egg batch no 3 was photographed and egg viability parameters analysed

Fertilization, hatching and development in eggs from wild-caught and farmed females

- Eggs from the photographed groups were incubated in triplicate for calculation of hatching success.
- Newly hatched larvae were photographed

To summarise:

- Farmed (F1) broodstock had more variable ovulatory intervals and fertilisation rates
- Eggs from F1 broodstock
 - Were smaller
 - Had lower fertilisation and hatching rates
 - Had higher density (heavier), leading to extra challenges in incubation

Question

 Are the observed differences between farmed and wild-caught females reflected in plasma profiles of steroids and gonadotropins?

Five wild-captured and five farmed female halibut breeders were followed through an annual reproductive cycle

Sampling and analyses

- Blood samples were taken at 3-6 week intervals from September 2016 to July 2017
- Plasma concentrations of estradiol-17ß, testosterone, FSH and LH were analysed
- Time and duration of spawning was recorded

Plasma concentration of steriod hormones

FarmedWild-caught

Plasma concentrations of Fsh and Lh

- — – Farmed ——— Wild-caught
- Fsh concentrations were lowest, and Lh concentrations highest during spawning
- Fsh concentrations were highest during vitellogenesis
- Individual variations were high and there were no significant differences between farmed and wild-caught females.

In conclusion

- Plasma hormone concentrations were similar in farmed and wild-caught females, and reflected maturity stage
- Plasma Fsh concentrations were low during spawning, and increased after spawning in both farmed and wildcaught females
- Plasma Lh concentrations were highest during spawning in all fish

Future?

- Broodstock selection essential wild-caught fish may still be necessary for some time.
- Causes for different buoyancy?
- Halibut genome is sequenced and assembled, will be made available in 2019 – markers for important traits.
- New methods for egg quality assessment (proteomics).
- Epigenetics effects of broodstock handling, nutrition etc.

