Reproductive performance of farmed and wild-caught halibut Birgitta Norberg, Børre Erstad, Jone Bjelland, Walter Olsen-Ryum, Margareth Møgster, Ragnfrid Mangor-Jensen, Sara Olausson, Jeanette Veivåg, Francois Chauvigné, Joan Cerda, Kristin Hamre, Anders Thorsen, Dinos Mylonas ## **Objective** - Improve fecundity and gamete quality in F1/F2 broodstock. - Better selection of broodstock - Optimize spawning performance ### **Background** Reproductive dysfunctions in captive animals, especially the first generations, captive breeding have been reported ### **Approach** - Farmed female halibut (2007-generation) were compared with wild-caught females - All fish were held in the same tank and given the same food - Biometric data, fecundity, egg and larval quality, and plasma homrone prfiles ere compared. # Biometric and spawning performance data of wild-caught and farmed female halibut | | Wild-caught females | Farmed (F1) females | |--|---------------------|---------------------| | | | | | n | 3 (4 ^a) | 5 | | length (cm) | 150.7 ± 6.2 | 113.4 ± 3.9 | | weight (kg) | 48 ± 5.7 | $19.2 \pm 2.3*$ | | number of batches ·female ⁻¹ | 7.3 ± 0.6 | 9.4 ± 1.7 | | spawning interval (hours) | 82.2 ± 8.4 | 72.4 ± 22.9 | | batch volume (mL) | 2300 ± 900 | $700 \pm 300*$ | | total fecundity (mL·female ⁻¹) | 16700 ± 420 | $6800 \pm 130*$ | | relative fecundity (mL·kg ⁻¹) | 347 ± 70 | 349 ± 84 | | average fertilization (%) | 89 ± 7 | 61 ± 29 | ^a One wild-caught female was left undisturbed for most of the season, due to a large skin lesion, and was not included in calculations. ^{*}Significant difference (P<0.05; Mann-Whitney U-test) ### Egg diameter #### Egg viability in wild-caught and farmed females Fertilized Dead Unfertilized In all females, egg batch no 3 was photographed and egg viability parameters analysed # Fertilization, hatching and development in eggs from wild-caught and farmed females - Eggs from the photographed groups were incubated in triplicate for calculation of hatching success. - Newly hatched larvae were photographed #### To summarise: - Farmed (F1) broodstock had more variable ovulatory intervals and fertilisation rates - Eggs from F1 broodstock - Were smaller - Had lower fertilisation and hatching rates - Had higher density (heavier), leading to extra challenges in incubation #### Question Are the observed differences between farmed and wild-caught females reflected in plasma profiles of steroids and gonadotropins? Five wild-captured and five farmed female halibut breeders were followed through an annual reproductive cycle ## Sampling and analyses - Blood samples were taken at 3-6 week intervals from September 2016 to July 2017 - Plasma concentrations of estradiol-17ß, testosterone, FSH and LH were analysed - Time and duration of spawning was recorded # Plasma concentration of steriod hormones FarmedWild-caught # Plasma concentrations of Fsh and Lh - — – Farmed ——— Wild-caught - Fsh concentrations were lowest, and Lh concentrations highest during spawning - Fsh concentrations were highest during vitellogenesis - Individual variations were high and there were no significant differences between farmed and wild-caught females. #### In conclusion - Plasma hormone concentrations were similar in farmed and wild-caught females, and reflected maturity stage - Plasma Fsh concentrations were low during spawning, and increased after spawning in both farmed and wildcaught females - Plasma Lh concentrations were highest during spawning in all fish #### Future? - Broodstock selection essential wild-caught fish may still be necessary for some time. - Causes for different buoyancy? - Halibut genome is sequenced and assembled, will be made available in 2019 – markers for important traits. - New methods for egg quality assessment (proteomics). - Epigenetics effects of broodstock handling, nutrition etc.