

Hatchery production of the greater amberjack (Seriola Dumerili)

- N. Papandroulakis, Tsalafouta, P. Anastasiadis, I. E. Papadakis, N. Mitrizakis (HCMR)
- C.M. Hernández Cruz, A. La Barbera, H. Fernández-Palacios Barber, M. Izquierdo (FCPCT)
- S. Jerez, M. Virginia Martín (IEO)
- J. Perez, C. Rodríguez (ULL)
- G. lakovopoulos (GMF S.A.)

Fundación Parque Científico Tecnológico
Universidad de Las Palmas de Gran Canaria

- Data on <u>applicable</u> rearing conditions in captivity is scarce
 - particularly for the early developmental stages

Aim:

- Define (some of) the parameters related to the larval rearing in order to optimize the applied methodologies
 - □ larvae are optical predators
 - □ adequate foraging of appropriate preys

- Objectives: to obtain new information on the larval rearing parameters
 - □ Acquire basic biological information
 - Ontogeny of digestion and vision system
 - Ontogeny of Somatotropic axis
 - Skeletal Ontogeny
 - □ Feeding regime Prey enriching diet
 - ☐ Husbandry parameters
 - tank type-shape,
 - stocking density,
 - light conditions

Ontogenesis of key biological systems

Mesocosm

 A semi-intensive technology that facilitates the rearing of several species providing the required "biological control"

Intensive rearing

- The "pseudo-green" water methodology – closed hydraulic circuit
- Controlled conditions
 - temperature
 - photophase
 - ☐ feed distribution
 - computer based application

Methodology (HCMR)

Mesocosm

- Water: filtered (5 µm) natural seawater (salinity 40 psu) UV treated
- T: 24 ± 0.7 °C
- pH: 8.0 to 8.2
- D.O. 5.8 to 6.8 mg l⁻¹.
- Photophase: 24L:00D from 3 to 25 dph then to 18L:06D.
- Light intensity: 500 lux to 1,000 lux, ~250 lux at night

Intensive

- Water: filtered borehole 35 psu-water.
- T: 22 ± 0.5°C until mouth opening
 24 ± 0.5°C afterwards.
- pH: 8.0 to 8.2
- D.O. 6.8 to 7.2 mg l⁻¹.
- Photophase: 24L:00D from 3 to 25 dph then 18L:06D
- Light intensity: 200 800 lux~200 lux at night

Feeding

- □ 3 to 18 dph : Microalgae (*Chlorella sp*) and enriched rotifers (*Brachionus sp*)
- □ 12 to 14 dph. Artemia AF A_0 nauplii and 14 to 30 dph enriched Artemia EG A_1 nauplii
- 16 dph (MES) and 21 dph (INT) artificial feeds (grain size 200–300 μm; and 300–500 μm)
- Frozen gilthead sea bream eggs in MES after 20 dph
- Mesocosm tanks developed naturally zooplankton (harpacticoida copepods)

Methodology (FCPCT)

- □ Two different tanks types: 40,000 I and 2,000 I
 - Photoperiod was natural (14:10 h, L:D),
 - S=37 psu, and
 - T=25-27°C
 - DO=6.78 ± 0.5 ppm
 - Feeding: live phytoplankton (Nannochloropsis sp.), enriched rotifers (1-30 dph), enriched Artemia (12-30 dph), microdiets of 75, 150 and 300 μm (13-30 dph)

Ontogeny of digestive and vision systems

- The digestive system
 - enables the fish to capture, ingest, digest and absorb nutrients from the food
 - □ is of special relevance to establish the larval feeding protocol
 - ontogenesis of related organs and digestive enzymes

The digestive system ontogenesis is a rapid process

	0	1	2	3	4	5	6	7	8	9	12	15	17	20	23	25	28	30
INT	3.52	3.72	3.73	3.81	3.96	4.01	3.94	3.98	4.23	4.23	4.55	5.26	5.19	6.01	6.35	7.77	8.47	8.20
MES	3.52	3.67	3.75	3.83	3.99	4.05	4.03	4.02	4.05	4.09	4.53	5.00	5.69	6.49	7.2	9.23	8.54	8.74

Total length in (mm)

The **gastric glands** mark the transition from larval to juvenile and the development of a functional stomach

 in greater amberjack appeared after 5.5 mm of TL in all the rearing systems (16-20 dph).

	Growth rate (exp)	Survival
Mesocosm	0.065 d ⁻¹	13.9±0.8%
Intensive	0.047 d ⁻¹	8.2±3.1%

Ontogenesis of digestive enzymes

- 0-3 dph: enzymatic activities before onset of exogenous feeding importance of egg glycogen as energy during the embryonic development
- 3-5 dph: higher activity of alkaline protease than lipase proteins the main energy source
- 5-10 dph: period of rotifer feeding proper nutritional condition of the larvae
- 10-15 dph: in both systems malnutrition difficult acceptance of Artemia

- 0 dph: retina an undifferentiated neural epithelium (UNE)
- 1-2 dph the first structures appeared
 - ganglia cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer (INL), the outer plexiform layer (OPL), the outer nuclear layer (ONL) and the photoreceptor layer (PL)).
- 3 dph- onwards: the pigment epithelium PE appeared on the external area of the retina
 - the nucleus of the cone cells appeared in the outer nuclear layer
- Rods first appeared at TL 5.0±0.2 mm

Lessons learned

- Transitions to juveniles after 5.5 mm
- Protein main energy source since first feeding
- Night vision after 5.0 mm
- Rotifer appropriate as diet
- Difficult adaptation to Artemia

Ontogenesis of the somatotropic axis

IGF Binding Proteins 1, 2, 3, 4, 5

Available for the first time information on the regulation of the various components of the IGF signaling pathway in greater amberjack

Skeletal Ontogeny

Cranial development

Vertebral column and fin ontogeny

TL: 10.15 ± 1.86mm

TL: 13.03±0.09mm

Effect of feeding regime and probiotics

- Effect of
 - prey concentration and supply frequency
 - □ use of immune modulators substances during the rotifer administration

Rotifers

- □ Density: 5 vs 10 rot ml⁻¹
- Distribution 2 vs 3 times d⁻¹

Four enriching diets

- A commercial diet (T1)
- □ LC60/20:4n-6/10ppm carotenoids basic emulsion (T2),
- □ LC60/20:4n-6/10ppm carotenoids basic emulsion with 20% *Echium* oil (T3)
- □ LC60/20:4n-6/10ppm carotenoids basic emulsion with 20% black cumin oil (T4)

Larval growth and survival

- □ Similar regardless rotifer density
 - slightly better at 5 rot ml⁻¹
- □ Better for feeding 3 times day⁻¹
- □ Better with T4

Humoral innate immune activities 7 dph and 12 dph larvae

Effect of larvae density

- 3 densities: 25, 50 and 75 eggs l⁻¹
 - □ Two different tanks types: 40,000 I and 2,000 I tested for 30 days
 - Photoperiod natural (14:10 h, L:D),
 - S: 37 psu,
 - T: 25-27°C
 - DO: 6.78 ± 0.5 ppm
 - Feeding: live phytoplankton (*Nannochloropsis sp.*), enriched rotifers (1-30 dph), enriched *Artemia* (12-30 dph), microdiets of 75, 150 and 300 µm (13-30 dph)

Deformities observed

A: Lordosis

B, **G**: Vertebral fusion

C: Fusion of neural arch and spines

D: Fusion of caudal vertebrae

F, H, I: Anomalous dentary

G: Partial vertebral fusion in caudal vertebrae

J: Cephalic anomalies (glossohyal)

Effect of environmental parameters

Fundación Parque Científico Tecnológico Universidad de Las Palmas de Gran Canaria

Tank hydrodynamics

- Two different tanks types: 40,000 I and 2,000 I were tested
 - eggs from natural spawning (10 eggs l⁻¹)
 - photoperiod natural (14:10 h, L:D),
 - S: 37 psu,
 - T: 25-27°C.
 - DO: 5-8 q l⁻¹.
 - Feeding: live phytoplankton (*Nannochloropsis sp.*), enriched rotifers (1-30 dph), enriched Artemia (12-30 dph), microdiets of 75, 150 and 300 µm (13-30 dph)

The effect of light (intensity and duration)

- Photophase 18L:06D vs 24L:00D)
- Background color (black, green, white)

Intensive rearing

- The "pseudo-green" water methodology closed hydraulic circuit
 - □ Water: filtered borehole 35 psu-water.
 - T: 22 ± 0.5°C until mouth opening 24 ± 0.5°C afterwards.
 - □ pH: 8.0 to 8.2
 - D.O. 6.8 to 7.2 mg l⁻¹.
 - Photophase: 24L:00D from 3 to 25 dph then 18L: 06D
 - □ Light intensity: 200 800 lux ~200 lux at night

Results - Photophase

	Growth rate (exp)	Survival
18L:06D	0.031 d ⁻¹	10.6±4.2%
24L:00D	0.031 d ⁻¹	8.2±3.1%

Results - Background color

Growth rate (exp): White: 0.0393 d⁻¹

Black: 0.0481 d⁻¹ Green: 0.0355 d⁻¹

SURVIVAL: WHITE: 22,2%

BLACK: 8,2%

GREEN: 16,5%

Different expression of genes IGF-I, IGF-II and IGF Binding Proteins 2,3 & 4
 higher levels for WHITE background

- Max light intensity in the water column at 30 cm ~50 lux
- 3-4x higher than without light

Table 3. Measured light intensity (Lux) at several points in both tanks of each treatment. Values are means ± standard deviation.									
Measureme	ent point	Green-no light	White-no light	Green-light	White-light	Black			
Under surface	Centre (n=2)	334 ± 4	303 ± 14	255 ± 11	234 ± 1.1	295 ± 24.6			
	Side (n=8)	86 ± 102	78 ± 98	64 ± 10	66 ± 82	68 ±11			
Depth ~30cm	Angle 45° (n=8)	15 ± 7.4	13 ± 6.2	11 ± 4.5	11 ± 7.7	12 ± 2			
	Towards centre (n=8)	11 ± 1.7 ^a	12 ± 1.1 a	31 ± 1.7 b	27 ± 4.8 b	9 ± 3			

 This study showed a catalytic effect of the light conditions on larval survival

□ may refle species

The prese environme any previc

Indicate a rearing of

Towards an industrial protocol

Validation in Commercial hatcheries

- Hatchery 1
 - □ Larvae density 75 ind I⁻¹
 - Light intensity
 - 800 lux on 3-6 dph, 1200 lux on 6-12 dph 1000 lux 15 dph 500 lux 20 dph
 - □ Photophase: 24L:00D from 3-20 dph then 18L:06D
 - □ Feeding: phytoplankton, enriched rotifers, Artemia and dry feeds. Frozen eggs after 20dph
 - Size selection during weaning
 - □ In 2017
 - 15.000 juveniles classified in 4 size-classes between 0.3 and 2.5 g to nursery
 - In 2018 similar method
 - until 20 dph survival ~10%
 - between 20-30 dph: no sorting mortality >65% due to cannibalism
 - 30 dph 15.000 individuals were transferred to nursery

Validation in Commercial hatcheries (2)

Hatchery 2

- Direct incubation of eggs in the larval rearing tanks
- ☐ T: 24.5 to 25.0 °C.
- □ pH: 7.8
- Light conditions : modified in some tanks
 - intensity on the surface >1000 lux
- □ Photophase: 24L:00D from 3-20 dph then 18L:06D
- □ Feeding: enriched rotifers, instar I (TL >5mm) and enriched instar II (TL >6mm) Artemia nauplii and artificial diets (TL >7mm).
- Tanks with high light intensity performed better
- □ Sorting in size from 20 dph, improves significantly survival
 - 48.300 juveniles of 25-50 g transferred in cages

Recommendations (1)

Rearing parameters

- large tank improves growth performance and survival
- □ egg stocking densities ~ 25 eggs I⁻¹
- \square DO: 5.0 to 8. mg l⁻¹, preferably >6.0 mg l⁻¹
- ☐ S: 37 40 psu
- □ pH: 7.8-8.5
- □ T: 22 to 27°C, preferably between 23.5 and 25.0°C
- □ Photophase 18L:06D from 1 to 25 dph
- □ Light intensity: Defused light of 800-1200lux, 3-12 dph gradually 800 lux until 20 dph

Feeding

- coordinate rearing conditions and larval development
- □ live microalgae at 150-300 x 10³ cell ml⁻¹ since 2 dph
- enriched rotifers min 2x d⁻¹, 3-15 dph, at 3-7 rot ml⁻¹; Artemia AF (TL>5mm), for 2-3 days; enriched Instar II (TL> 6.0 mm); dry diet (200-800 μm)) (TL>6.5 mm)
- immune modulators (*Echium* and black cumin oil) together with optimized enriching emulsion and astaxanthin as carotenoid improve larval performance

Recommendations (2)

Husbandry

- high size variability (at 20-30 dph) in all rearing systems tested until today (unknown reasons)
 - early sorting to appropriate size classes
 - standard methods and equipment available in all hatcheries
 - significant higher survival compared to unsorted groups although the losses
 - mortality for unsorted groups >90%, for sorted groups 10-15%.
- Transportation of individuals
 - larvae with TL <15 mm do not tolerate netting, transfer performed with care.
 - larvae with TL >20 mm can be netted normally
- □ individuals >0.5-1 gr are handled easier
 - light anesthesia may help

2_mm

Thank you!

Hellenic Centre for Marine Research Institute of Marine Biology, Biotechnology & Aquaculture

Fundación Parque Científico Tecnológico Universidad de Las Palmas de Gran Canaria

