

do Mar e da Atmosfera

Meagre Argyrosomus regius

Natural spawnings and larval rearing

Pedro Pousão Ferreira

IPMA – Instituto Português do Mar e da Atmosfera EPPO - Estação Piloto de Piscicultura de Olhão

*pedro.pousao@ipma.pt

TUESDAY 9TH OCTOBER 2018, PALAU MACAYA, BARCELONA, SPAI

Rearing Location IPMA – Aquaculture research Station is located in the Ria Formosa coastal lagoon in the Algarve, the Southern province of Portugal

RESEARCH AREAS

- Breeding selection
- Nutrition an zootechnical aspects
- Gamete quality

- Rearing protocols
- Feeding and nutrition
- Identify quality biomarkers (eg. Digestive physiology, metabolim, etc).

BROODSTOCK

JUVENILES

ONGROWIN

Higher efficiency and sustainability of production systems; offshore, RAS and IMTA

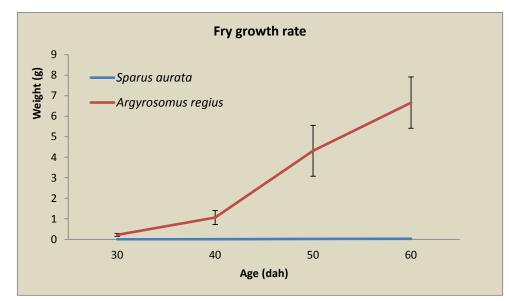
THE OWNER WATCHING TO AN A STATE OF A STATE

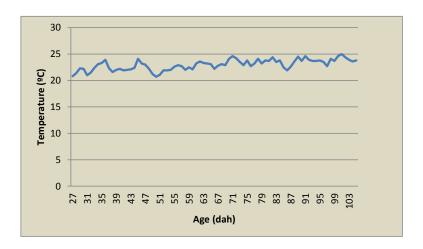
- Zootechnical protocols
- Monitoring fish welfare and pathologies.

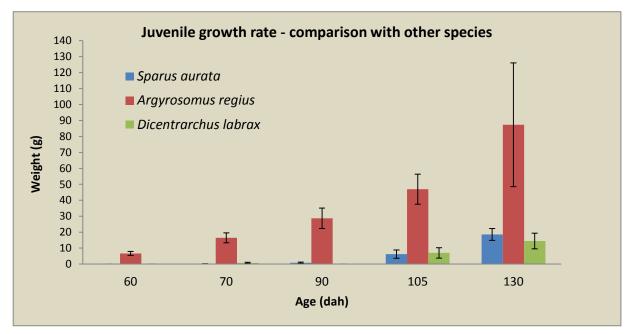
- Rearing protocols
- Feeding and nutrition
- Assess skeletal deformities
- Breeding selection

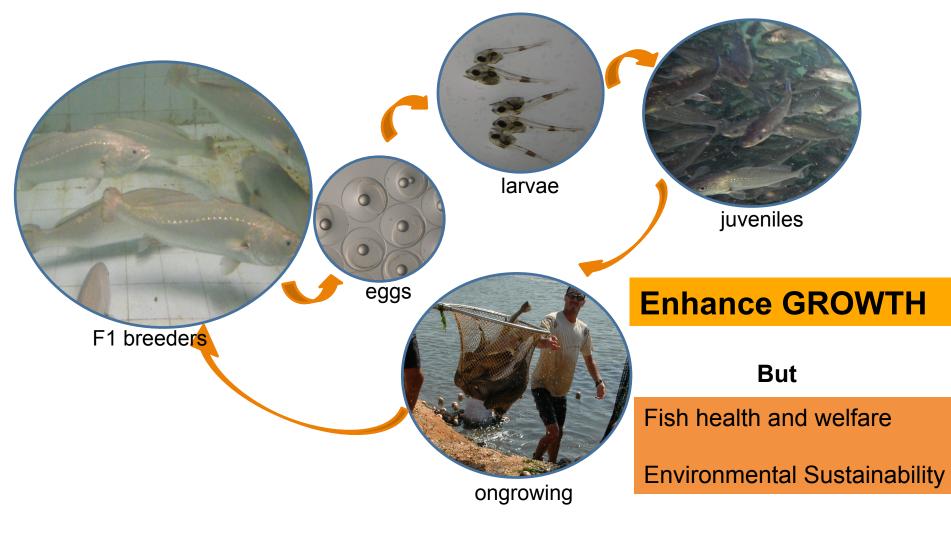
Work in progress - species of interest

Dicentrarchus labrax





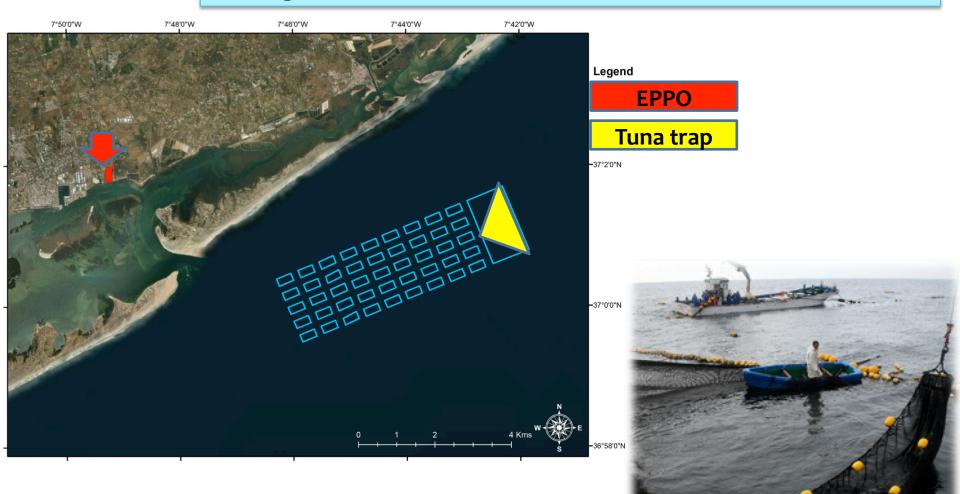




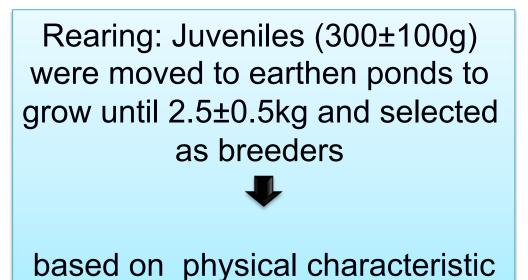
Research to enhance knowledge

FEEDING & NUTRITION

- > Optimize feeding protocols
- > Optimize nutrition



ORIGIN OF THE BROODSTOCK


8 meagre captured between 2007 and 2008, in a tuna trap (Tunipex, Olhão) located 2.5 miles off the SE Portuguese coast.

BROODSTOCK ORIGIN

In First generation (F1-2012) and second (F2-2017) generation breeders were rearing at the Aquaculture Research Center of Portuguese Institute for the Ocean and Atmosphere (IPMA)

BROODSTOCK

F1

We maintain meagre F1 stocks in the earthen ponds as backup for future works Weigth range 5-15Kg

Adapted to inert feed

Provided new stocks for a hatchery in France or others

BROOSTOCK MANAGEMENT Rearing Conditions

Cylinder tank : 50m³

Wild 2007- 2018

F1 2015- 2018

- Renewal: 20 L.min⁻¹
- Salinity : 35-38
- Temperature: >14 °C to < 24 °C
- Natural photoperiod
- Density : < 5 Kg/m³
- Protected tanks with shading net

POUSÃO-FERREIRA, P. *et al.*, 2010. Aquaculture Europe'10 Seafarming tomorrow. Porto, Portugal: pp. 1040-1041.

Weighed: 15-40kg

Weighed: 15-20kg

In 2012 - to carry out different trials in triplicate we performed zootechnics adaptations

6 smaller tanks (9 m³)

Smaller individuals (F1)

<u>Trials</u>:

- Different photoperiods
- Nutritional trials
- Semen criopreservation

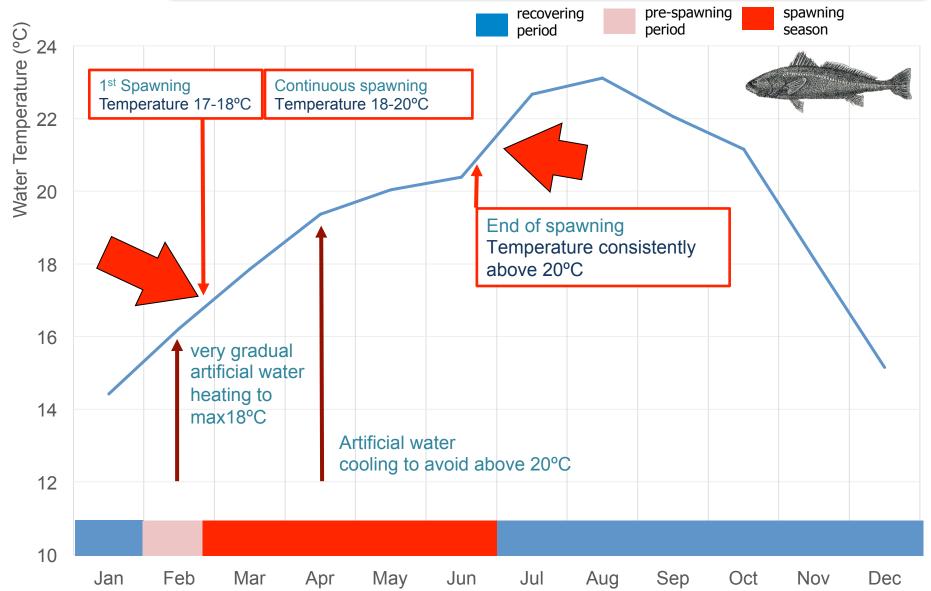
SANTOS M. *et al.*, 2018. *Aquaculture Research*:1–9.

BROODSTOCK MANAGEMENT

F1 2012- 2018

- Renewal: 8-10 L.min⁻¹
- Salinity : 35-38

Cubic tank: 9m³


- Temperature: Resting season: >12 °C to 26 °C Spawn season: 18°C to 21 °C
- Natural photoperiod
- Density : < 8 Kg/m³
- Protected tanks with net

Weighed: 2-12kg

BROODSTOCK MANAGEMENT – Temperature control

Feeding protocol intended to cover the nutritional requirements of the species and promote the fitness of the group in order to obtain good quality brood.

Meagre eat on live mackerel 2 weeks after capture.

Longer period of time to adapt to frozen diet when compared to sparids and seabass.

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Illex sp.		Sardine sp.		Illex sp.		

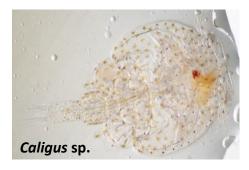
Pellet for seabream (*Sparus aurata*)

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
lllex sp.	Pellets	Sardine sp.	Pellets	lllex sp.	Pellets	Pellets

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Pellets	Pellets	Pellets	Pellets	Pellets	Pellets	Pellets

BROODSTOCK – Main pathologies

Adults very susceptible to external parasites, in the gills or skin (eg.: *Monogenea* genera).


Altered behaviour, such as head above surface and skin darkening were often observed when parasitosis occurred.

Regular prophylactic baths (Hydrogen peroxide, $H_2O_2 - 35\%$, 1 hour) against parasites in adult fish.

SOARES, F. et al., 2011. Bulletin - European Association of Fish Pathologists, 31(5): 189

SOARES, F. et al., 2012. Bulletin - European Association of Fish Pathologists, 32(1): 30-33

SOARES, F. et al., 2018. Journal of fish Diseases, 49(4): 1373-1382.

BROODSTOCK MANAGEMENT - <u>Fish handling</u>

Wild broodstock

F1, F2 broodstock

Sampling: 1) Fasted for 48 hours;

2) All fish were anesthetized in the tank with 150ppm of 2-phenoxyethanol, sampling was performed inside the rearing tank

- 3) Tagged with PIT Tags;
- 4) Measured for total length, weighed

Sampling: 1) Fasted for 24 hours;

2) All fish were anesthetized in the tank with 75ppm of 2-phenoxyethanol.

Transfered individually

Vat: 150 a 200ppm of 2phenoxyethanol.

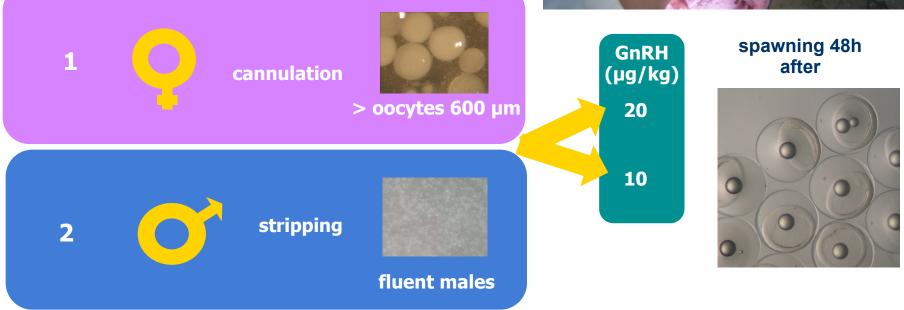
- 3) Tagged with PIT Tags;
- 4) Measured for total length, weighed

BARATA, M. et al., 2015. Journal of the World Aquaculture Society. 47 (1)

BROODSTOCK MANAGEMENT - <u>Fish handling</u>

Sex determination

- **1. Apply abdominal pressure** to identified by the presence of milt Male
- 2. Catheterization by inserting a plastic catheter into the genital pore to collect a ovarian samples



Hormonal spawn induction

Wild Breeders

Reproductive season: Spring (March, April, May)

Wild Breeders

Wild broodstock were adapted to captivity and spawns were obtained in 2009-2010

	2009	2010
	Spa	wns
Parameter	Wild(n=3)	Wild(n=3)
Average (g)	667.7±240.7	502±53.4
Eggs Viability (%)	47.4±11.0	41.7±14.3
Eggs diameter (mm)	0.9±0.20	0.7±0.16
Hatching rate (%)	38	10.0±5.3
Total length at hatching (mm)	2.7±0.2	2.7±0.16

POUSÃO-FERREIRA, P. *et al.*, 2010. Aquaculture Europe'10 Seafarming tomorrow. Porto, Portugal: pp. 1040-1041.

NATURAL SPAWN

F1, F2 Breeders

Sex ratio – 1:1

Age > 3 years

Weight > 1,8 Kg

eggs 1.03±0.03 mm

SOARES, F. et al., 2012. Aqua 2012, Prague, Czech Republic: pp.1045

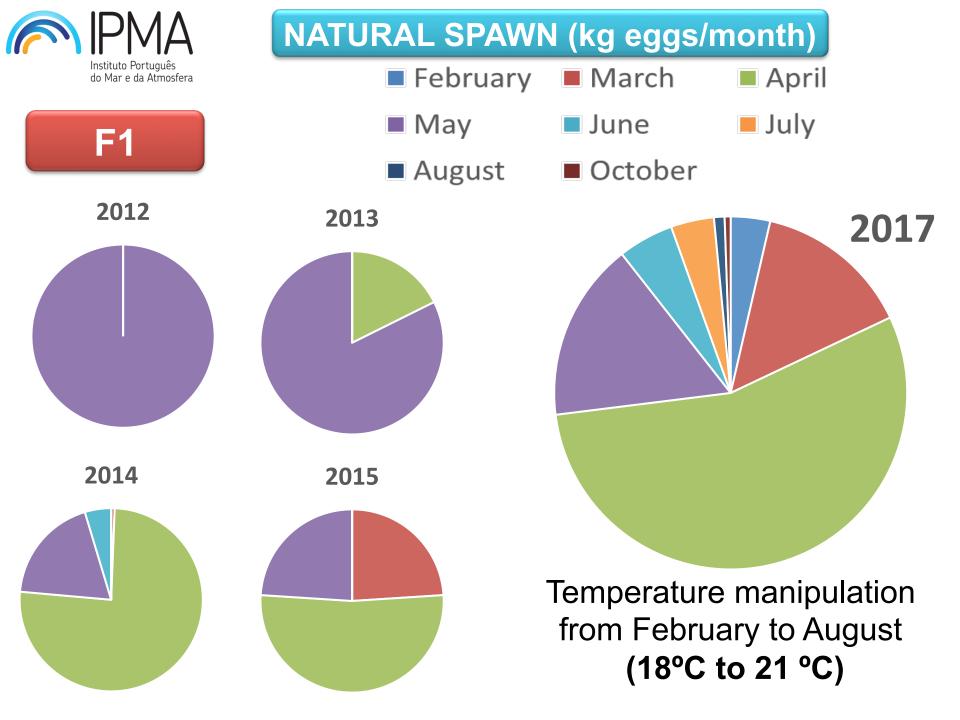
POUSÃO-FERREIRA, P. *et al.*, 2015. Atas del XV Congreso Nacional y I Congreso Ibérico de Aquicultura, Acuicultura, cultivando o futuro, Huelva 2015

F1

NATURAL SPAWN

Introduction of new F1 individuals (3y old fish) from different origins - increase genetic variability

Season	3y old fish 2012	4y old fish 2013	5y old fish 2014	2015	2016	2017
Fish nº	10	15	78	65	70	70
Nº tanks	1	1	6	7	7	7
Weight (Kg)	2.2±0.2	3.5±0.5	5.1± 1.0	6.9±3.2	5.6±1.9	6.5±1.7
Density (Kg m³)	5.6	6.4	7.1±0.2	6.9±1.4	5.7±0.4	5.9±1.7
N⁰ spawns	n=5	n=5	n=44	n=75	n=109	n=102
Spawn biomass (Kg)	0.4	0.7	21.8	24.6	41.0	45.1
		4 reached fish contrib				


F1

NATURAL SPAWN

the hatching rate declines due to zootechnical reasons - large numbers of eggs in the collector

Eggs viability increase with broodstock age

Wild meagre broodstock was adapted to captivity at IPMA. Successful spawning after hormonal induction. Low eggs viability and hatching rate.

F1 meagre broodstock was transferred from the earthen pond to indoor tanks

Broodstock kept spawning naturally (without any hormone utilisation) with temperature manipulation.

High hatching rate.

Viability was superior from F1 broostock. Superior hatching rate from F1 broostock.

The use of F1 broodstock seems a promising tool to obtainedspawns naturally and with good quality.SOARES, F. et al., 2015. Fish

SOARES, F. et al., 2015. Fish Physiology and Biochemistry, 41(6)

do Mar e da Atmosfera	NATURAL	. SPAWN		2018 typical y nate char			
F1 Variability between tanks							
Parameters	9m ³	9m ³	9m ³	9m ³	50m ³		
Fish nº	8	10	8	10	12		
Weight (Kg)	5.6±1.3	6.9±1.8	7.0±1.5	5.8±1.3	12.0±1.0		
Density (Kg m3)	4.2	6.6	6.6	5.5	2.9		
nº spawns	1	2	18	-	3		
Spawn biomass(g)	37	1064	6050	-	179		
Eggs Viability (%)	68	82.4±0.1	78.3±0.1	-	43.9±0.1		
Hatching rate (%)	-	-	54.6±19.3	-	32.7		

Spawning season in progress

NATURAL SPAWN

2018 - Variab	ility between	tanks
18	17	
3.9±1.2 8.2	4.8±1.3 9.7	
n–3 854	n–17 7 646	
36.0±0.4	70.6±0.3	
65.4	46.2±16.6	
2 months	5 months	
	18 3.9±1.2 8.2 11-3 854 36.0±0.4 65.4	3.9 ± 1.2 4.8 ± 1.3 8.2 9.7 $1-3$ $1-17$ 854 $7 \ 646$ 36.0 ± 0.4 70.6 ± 0.3 65.4 46.2 ± 16.6

Spawning season in progress

Control tanks	F1 – F1 pars)	F2 – F2 Jears)		
nº fish	n= 26	n=35		
nº tanks	n= 2	n= 2		
Weight (Kg)	5.2±1.0	4.4±0.5		
Density (Kg m ³)	7.2±0.2	9.0±0.8		
n° spawns	n=44	n=20		
Spawn biomass(Kg)	15.6	8.5		
Eggs Viability (%)	72.7±17.6	62.6±0.27		
Hatching rate (%)	90.9 ± 7.2	50.9±14.8		
Season duration	4 months	5 months		
	Diferent	inert diet may affected		

spawn quality

BROODSTOCK TRIALS – Optimize diet formulation

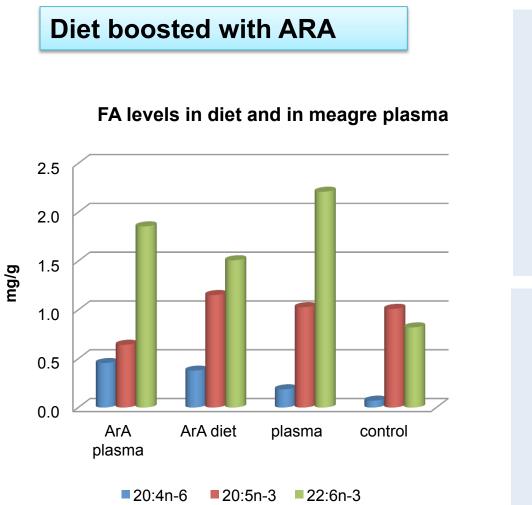
It is known that nutrient reserves of the yolk are dependent of the maternal nutrient reserves and consequently on the daily feeding regime of the broodstock, including nutrient levels and duration.

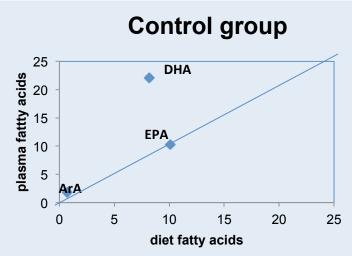
1) Arachidonic acid enrichment;

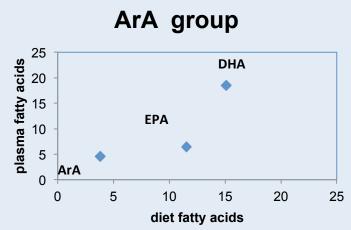
2) Phospholipids enrichment;

BROODSTOCK TRIALS – Arachidonic acid enrichment

Does ARA dietary enrichment improve spawning quality in meagre?


3000	1.2mg/g	3.8mg/gt	temperature	25	ARA (mg/g)	1.2	3.8
2500		\sim h	\sim	20	Nº spawns	44	14
<u>ک</u> 2000				15	Eggs viability (g)	15 683	6 529
Ouantity 12000				10	Total eggs (g)	21 824	7 780
සි පු 1000				10	Eggs Viability (%)	72.7	86.4
500		HHL.H.H.		5	Hatching rate (%)	90.9	80.0
0	,		հույլպել	0	DHA/ARA (mg/g)	0.8	1.3
	27-mar 6-apr 8-apr 10-apr 12-apr 14-apr 16-apr	18-apr 22-apr 26-apr 29-apr 01-may 07-may	17-may 22-may 28-may 04-jun 06-jun 18-jun		EPA/ARA (mg/g)	13.5	3.0


Higher number of eggs and a larger spawning period was obtained when meagre was fed with levels of 1.2 mg/g of ARA in the diet when compared to enriched diet (3.8 mg/g of ARA).


Meagre spawns quality was better without ARA enrichment.

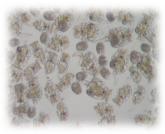
Relation between the FA profile of the diet and the fish plasma

Enhance eggs and larval quality trough breeders dietary

	Phospholipids effect			Work in progress			
	Breed diet Fish oil		il	Krill+ soy lecithin			
	Eggs Viability (%)	80± 11		67± 18			
	Eggs diameter (mm)	1.0±0.04		1.0±0.02			
	Hatching rate (%)	77± 21	1	93±9			

Hatching and larval development in batch from breeder with the same diet

Testing photoperiod and temperature


24h dark and 22°C Higher larvae FA (ARA, DHA e EPA) profile at mouth opening

LARVAL TRIALS – rearing larvae

- Functional visual sensorial organs larvae (detection of preys);
- Availability, size, contrast and movement of prey;
- Currents caused by water circulation and aeration;

- Environmental/zootechnical condition;
- Nutritional quality, quantity and digestibility;

IMPROVEMENT OF MEAGRE LARVAL REARING

Optimizing rearing technics

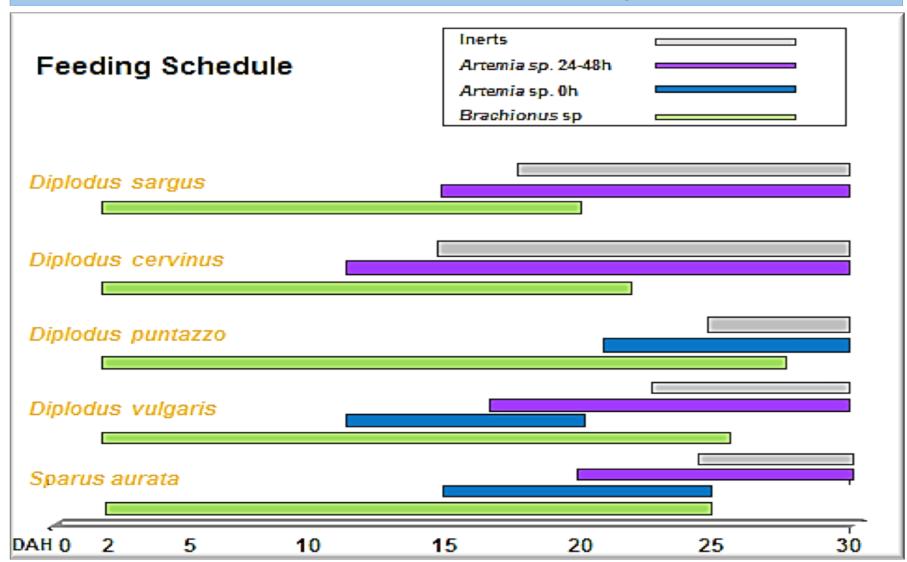
- 1. nutritional
- ✤ 2. zootechnic aspects

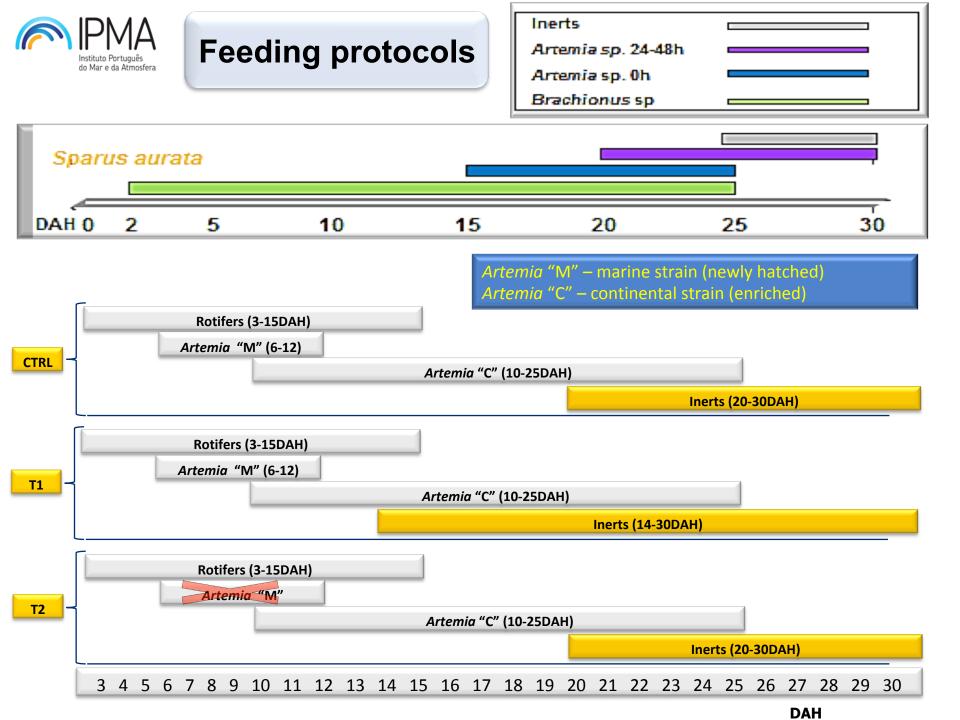
Optimizing nutritional protocols

feeding

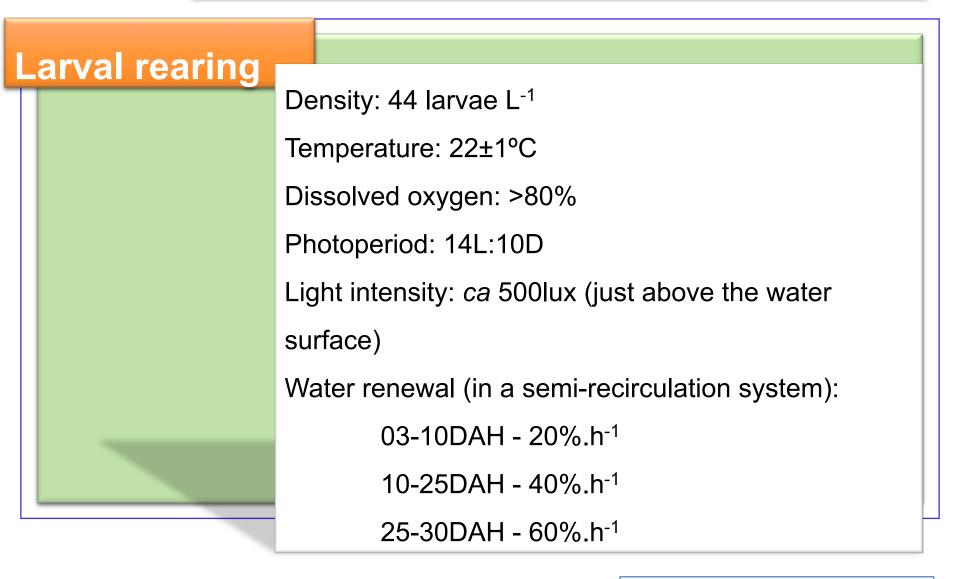
Functional Reliable

meagre implementation on aquaculture industry



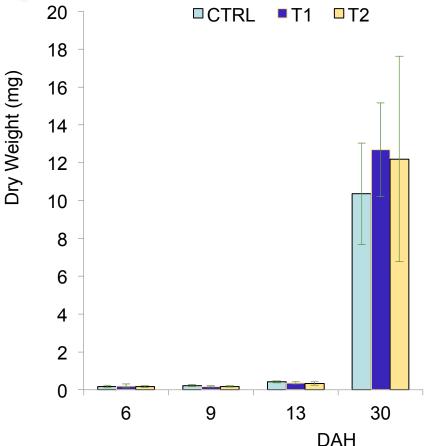

commercial production

LARVAL – Feeding protocols


Feeding protocols should be flexible, in order to promote growth and survival adapted to the each species and to the stage of development

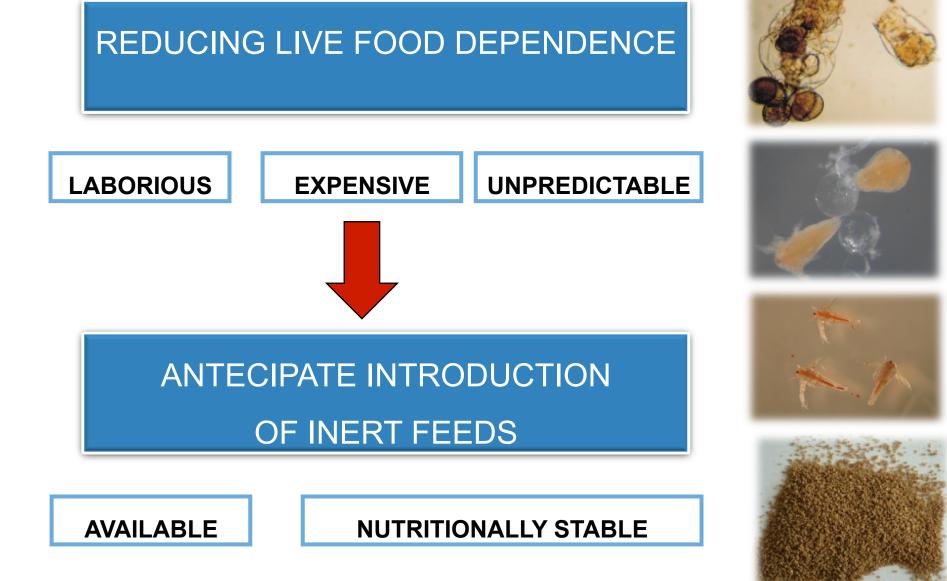
LARVAL – Feeding protocols

POUSÃO-FERREIRA, P. *et al.*, 2012. Aqua 2012, Prague, Czech Republic pp. 896.

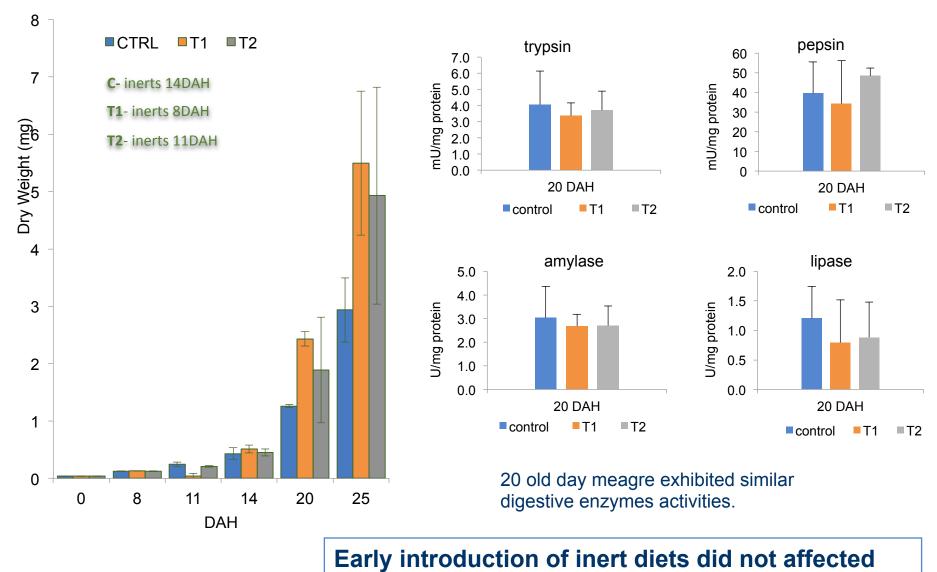

LARVAL TRIALS – Optimize feeding protocols

With the feeding protocols from gilthead seabream

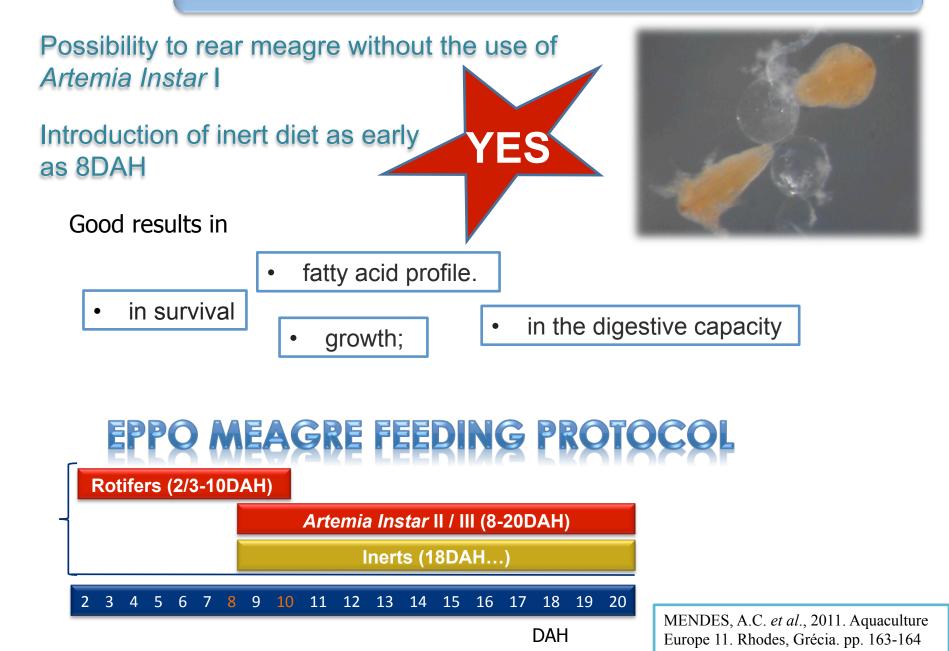
It was not possible to avoid CANNIBALISM



CONSTANT SUPPLY OF FOOD IN QUALITY, QUANTITY AND IN SIZE T1 (early inerts) presents lower variability T2 (no Instar I better result than control



LARVAL TRIALS – Optimize feeding protocols


LARVAL TRIALS – feeding trial

meagre digestive capacity

LARVAL TRIALS – Optimize feeding protocols

LARVAL TRIALS – Optimization of larval rearing

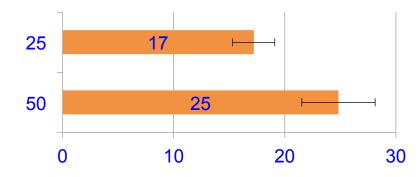
Rearing strategies To AVOIDING CANNIBALISM

CONSTANT SUPPLY OF FOOD IN QUALITY, QUANTITY AND IN SIZE

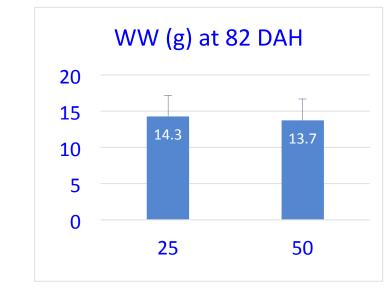
Define the best rearing density

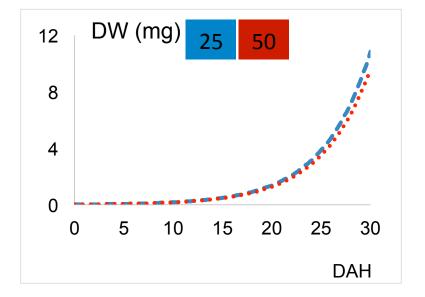
50 Larvae/ L

25 Larvae/ L



LARVAL TRIALS – Optimization of larval rearing


Testing larval density rearing until 20DAH


Density 50 higher survival than 25 Growth was not affected (*p*>0,05) Squeletical malformation not affecteda

long term growth

LARVAL TRIALS – Optimization of larval rearing

Candeias-Mendes, A. *et al.*, 2015. Actas del XV Congresso Espanol e I Congresso Ibérico de Acuicultura - "Acuicultura, Cultivando el Futuro". Huelva

Main conclusion in larval trials

1. Huge importance of feeding protocols and schedules

Adjusted to fast growing species

- **2**. Better results rearing density 35-50 larvas.L⁻¹ (first 20DAH)
 - survival necessarily lower density onwards VERY GENTLE TRANSFERENCE TO AVOID
 similar gowth HYPERINSUFLATION DUE TO STRESS

3. Acute compromise in protein:EFA's in larvae quality and growth
 *** high FA * short term**

high protein
long term

Nutrition

Zootechnical

Health and welfare

Research efforts have been made to optimize diets for meagre at other stages of biological cycle integrating zootechnical performance results with biochemical, histological, enzymatic and microbiological analysis:

Received: 3 May 2017 Accept
DOI: 10.1111/anu.12654

siol Biochem (2013) 39:1365 007/s10695-013-9790-x

original aProtein dietary requirements & Adequate dietary protein:lipid ratio

Effect of increased dietary protein level in meagre (Argyrosomus itro evaluation of the effect of a high plant protein diet Importance of rearing temperature on meagre protein regius) juverille growth and muscle cellularity neagre (Argyrosomus regius)

M. Saavedra Acceptability of eingredients rvof vegetable originate impact on fish performance Ferreira² | and digestive physiology and intestinal integrity

Effect of dietary of certain amino acids on meagre performance and muscle development phospholipids and

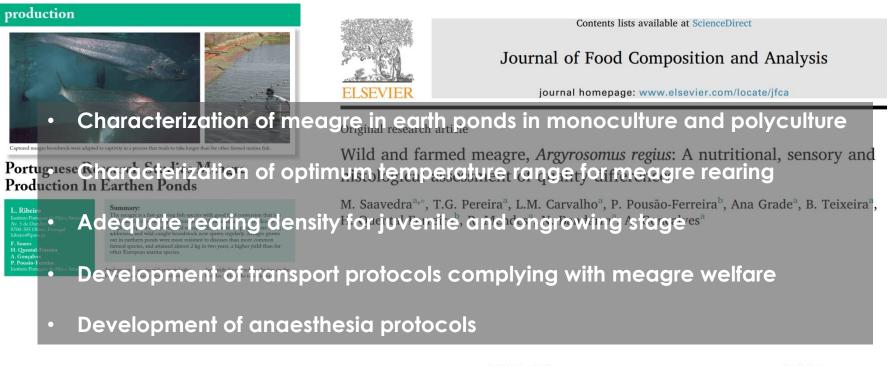
docos Dietarys levels of phospholipids and DHA:EPA ratio meagre diets – effect on fish growth performance, lipid profile and oxidative content lists available at ScienceDirect profile and oxidative content lists available at ScienceDirect Aquaculture

stress

ir•Me:Brotein turnover and synthesis when alternative ingredients to fish meal are used regius) juveniles

María João Magaihães de Almeida Xavier Mestrado em Recursos Biológeos Acusticos Brosse de FCJB Stocos

Effect of vegetable based diets on growth, intestinal morphology, activity of intestinal enzymes and haematological stress indicators in meagre (*Argyrosomus regius*)



Laura Ribeiro ^{a,*}, João Moura ^a, Marta Santos ^a, Rita Colen ^b, Vera Rodrigues ^c, Narcisa Bandarra ^a, Florbela Soares ^a, Patrícia Ramalho ^a, Marisa Barata ^a, Paula Moura ^a, Pedro Pousão-Ferreira ^a, Jorge Dias ^c

Zootechnical

Nutrition

Health and welfare

Institute of Food Science

1311

International Journal of Food Science and Technology 2015, 50, 1311-1316

Original article

Farmed meagre, *Argyrosomus regius* of three different sizes: what are the differences in flesh quality and muscle cellularity?

Margarida Saavedra,^{1*} Teresa G. Pereira,¹ Ana Grade,¹ Mónica Barbeiro,¹ Pedro Pousão-Ferreira,² Hugo Quental-Ferreira,² Maria Leonor Nunes,¹ Narcisa Bandarra¹ & Amparo Gonçalves¹

1 Division of Aquaculture and Upgrading, Department of Sea and Marine Resources, Portuguese Institute for the Ocean and Atmosphere (IPMA), Av. Brasília, 1449-006 Lisbon, Portugal

2 IPMA Aquaculture Research Station, Av. 5 Outubro, 8700-305 Olhão, Portugal

JOURNAL OF THE WORLD AQUACULTURE SOCIETY Vol. 47, No. 1 February, 2016 doi: 10.1111/jwas.12245

Efficiency of 2-phenoxyethanol and Clove Oil for Reducing Handling Stress in Reared Meagre, *Argyrosomus regius* (Pisces: Sciaenidae)

MARISA BARATA AND FLORBELA SOARES

Instituto Português do Mar e da Atmosfera-IPMA, I.P., Estação Piloto de Piscicultura de Olhão - EPPO, Avenida 5 de Outubro s/n, 8700-305 Olhão, Portugal

CLÁUDIA ARAGÃO

Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Edf. 7, 8005-139 Faro, Portugal

ANA CATARINA ALMEIDA, PEDRO POUSÃO-FERREIRA, AND LAURA RIBEIRO¹

Instituto Português do Mar e da Atmosfera-IPMA, I.P., Estação Piloto de Piscicultura de Olhão - EPPO, Avenida 5 de Outubro s/n, 8700-305 Olhão, Portugal

Health and welfare

Nutrition

Zootechnical

Vol. 102: 119–127, 2012 doi: 10.3354/dao02545	DISEASES OF AQUATIC ORGANISMS Dis Aquat Org	Published December 27		Bull. Eur. Ass. Fish Pathol., 31(5) 2011, 189					
		OPEN ACCESS	NOTE						
Sarcoma in the thymus of juvenile meagre			Sarcoma in the thymus of meagre						
Ar ^{gyro} Characterization ⁱⁿ of ⁱⁿ treagrester physiologic juanswers ⁴ r towards ^{, r} challenging									
F. Soare Conditions (environmenta nutritional, diseases, etc) M. Barata', S. W. Feist', P. Pousão-Ferreira', L. Ribeiro' 'IPMA, Av. 5 de Outubro s/n 8700-305 Olhão, Portugal									
 Elaboration of a data base of the principal diseases (parasitosis, bacteriosis,), skeletal malformations, and others observed in meagre produced at IPMA aquaculture research station 									
					 Dietary challenging ingredients on meagre performance at higher rearing temperature 				
					Bull. Eur. Ass. Fish Pathol., 32(1) 2012 Development of biomarkers to characterize fish welfare				
 First report of <i>Amyloodinium ocellatum</i> in farmed meagre (<i>Argyrosomus regius</i>) F. Soares*, H. Quental-Ferreira, M. Moreira, E. Cunha, L. Ribeiro and P. Pousão-Ferreira 		n <u>revi</u> e	E W	WILEY Aquaculture Research					
		Rev	Review of the principal diseases affecting cultured meagre (Argyrosomus regius)						
		Florbe	bela Soares ¹ lo Ana Roque ² lo Paulo J Gavaia ^{3,4} lo						

<u>Pedro Pousão-Ferreira</u>, Laura Ribeiro, Florbela Soares, Maria Cunha, Marisa Barata, Margarida Gamboa, Sara Castanho Quental-Ferreira, Anaisa Cordeiro, Narcisa Bandarra, Ana C. M

Thank you for your attention

IPMA - Portuguese Institute for the Ocean and Atmosphere
 Aquaculture Research Station, Av. 5 de Outubro s/n 8700-305 Olhão Portugal pedro.pousao@ipma.pt