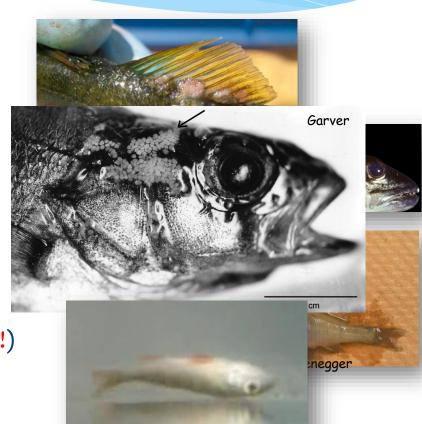
Viral threats of percid farming

laurent.bigarre@anses.fr


Infectious risks: higher and higher

Increase of farming

- 7 Trade = worldwide circulation of virus
- **↗** stress = susceptibility of host
- Mix of species = inter-species transmission
- Diagnostic tools poorly developed
- Sanitary measures unsufficiently used

Known viruses

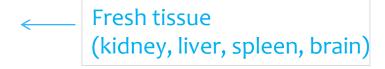
- + Iridovirus (Rana- and Lymphocysti-)
- + Betanodavirus
- • Retroviruses
- • Herpesvirus 📸
 - Rhabdoviruses
- Novirhabdovirus: VHSV (notifiable virus!)
- Perhabdoviruses (previously 'vesiculo')

Diagnostics: the methods

Cell culture

- Screen a wide range of viruses (but not all)
- Sensitive (may take weeks)
- large production of virus, facilitates genetic characterisation (sequencing, etc.), serological reactants
- National reference laboratories in Europe can perform it
- Needs well-preserved samples
- If virus-positive, no or limited identification
- Moderately useful for screening genitors
- Possible toxicity with larvae

Diagnostics: the methods



Molecular methods (cPCR and real-time PCR)

- (very) specific targets
- Rapid (1 day)
- Long time conservation of the sample (-20°C)
- Accurate genetic identification (sequencing)
- unsufficiently developed ... yet (in progress)
- to date, not adapted for screening genitors
- will be moderately adapted (real-time PCR)

Diagnostics: an overview

Screen many viruses Time consuming No genetic information

Specific of some viruses Rapid Molecular idenfication

- When possible, test different complementary methods CC + PCR !
- Test sick and healthy fish

Diagnostics: Take-home messages

- The perfect tool DOES NOT Exist
- Care of the samples for expedition
- For sick fish: Cell culture or PCR, or better: both
- For healthy fish:
 - No serological test!
 - Try cell culture / PCR, but false negative are possible

Percid Perhabdoviruses

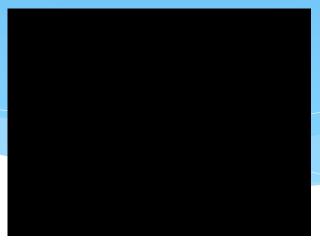
Classification of the Perhabdoviruses (2018)

No confusion with piscine reovirus PRV **STRV** Betts 2003 Perch Pike Sea trout Pike-perch Lake trout Grayling Perch AngRV • 0 Eel EVEX, EVA

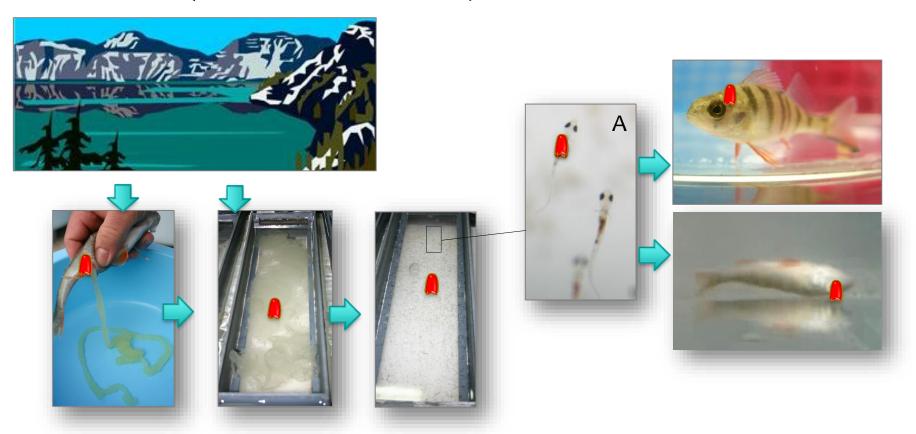
Percid perhabdoviruses (PRV and STRV)

- Discovered in France in 1980 (perch)
- High genetic diversity (more to characterize)
- Host range limited (really ?)

PRV/STRV associated with fish mortalities at various stages

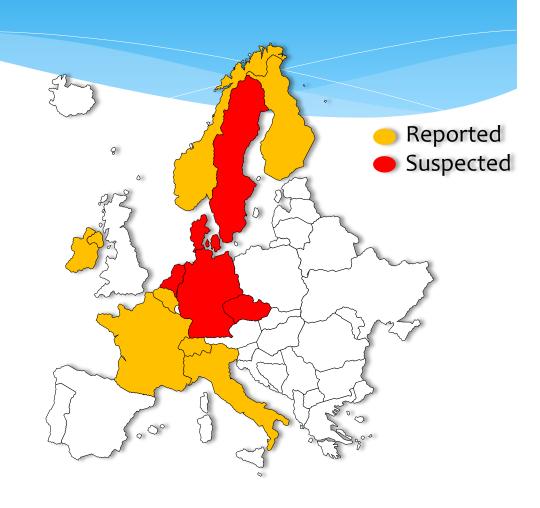


Pike-perch



Perch

Transmissions


- Pseudo-Vertical (genitors to fry)
- Horizontal (between fish, tanks, farms)

Epidemiology of Percid perhabdoviruses (PRV and STRV)

 First outbreaks: fish from the wild introduced in facilities

- Nowadays:
 - farm-to-farm
 - wild

Kinetics of disease

- Variable! A few days to several weeks
- Depends of age, species, virus, T°C, other factors

Wild perch introduced in facilities

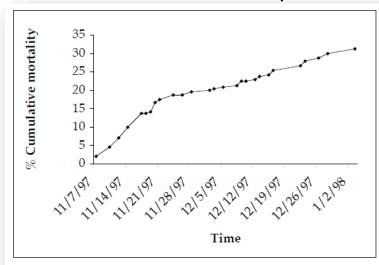


Fig. 1. Cumulative mortality (%) during the growth experiment (data from 3 tanks containing 80 individuals each are included).

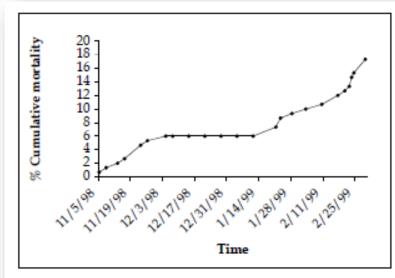
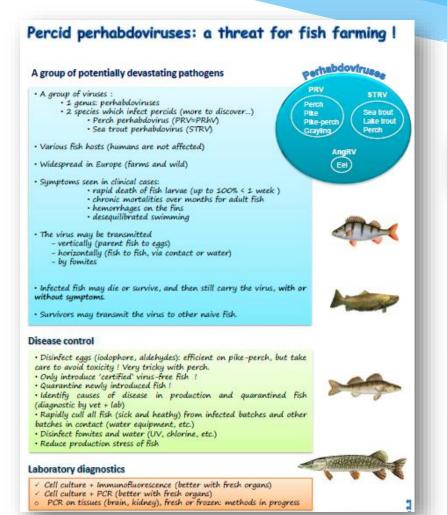


Fig. 2. Cumulative mortality (%) during the reproduction experiment (n=150).

Control of perhabdoviruses

- Prevent introduction
 - Desinfect eggs (as much as possible; tricky for perch)
 - Quarantine
 - Diagnostics (still to improve and disseminate)
- Identify and eliminate infected animals (sick and healthy carriers)
- Elucidate the origin = prevent re-introduction
 - -> molecular tracing

Tracing perhabdoviruses within Europe



Molecular tracing: why and how?

- ISSUE: Obtaining the genomic sequence of a virus
- WHY? To understand its origin: host, geography, provider, etc.
- HOW? To compare the sequence of a virus to **published** viruses with available epidemiological data (country, host species, year): in progress
- To compare the sequences of 2 viruses from 2 outbreaks: are they the same or not?

Molecular tracing provides only clues. Needs of **communication** with stakeholders to understand what really happened.

A leaflet to disseminate

Conclusions

- Various viral families are threats. More will emerge!
- Rhabdos are the major risks
- Each fish movement is a risk of virus spread
- Always send samples to labs when sick fish... and test healthy as well periodically
- Diagnostics methods exist and are in progress. Contact you national ref. lab. or others