



Faculty of Sciences and Technologies

Nancy, France 27. June













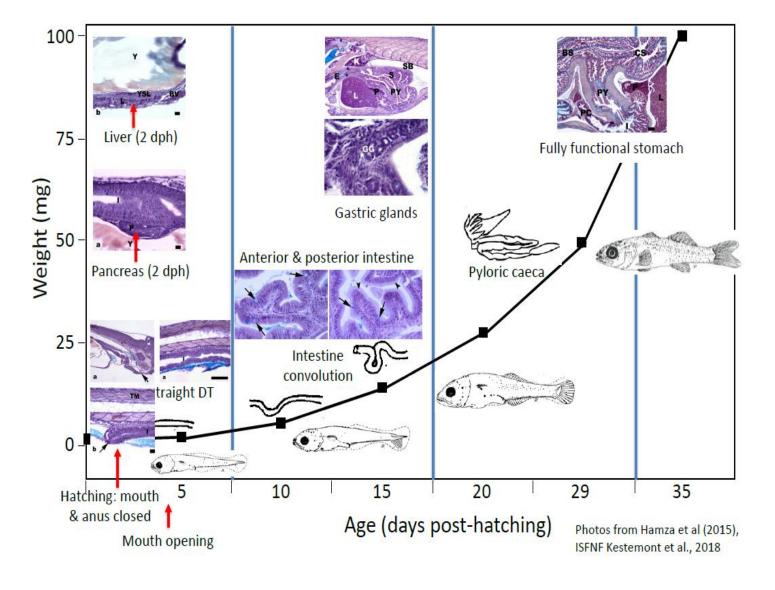
# Studies on nutritional requirements and feed optimization for pikeperch larvae

Ivar Lund, DTU Aqua

N. El Kertaoui; P. Kestemont; A. Pérez; D. Dominguez; M. Izquierdo, D.B. Reis; J. Bossuyt; M. Gesto; P. V. Skov; C. Rodríguez

#### DTU Aqua

National Institute of Aquatic Resources


Faculty of Sciences and Technologies

Nancy, France 27.
June



# Pike perch larval development





Faculty of Sciences and Technologies

Nancy, France 27.

June



# Nutritional requirements of pike perch larvae, What do we know?



- ✓ Nutritional deficiencies of artificial diets may hinder digestion and absorption
- ✓ Formulated feeds used from 15-20 dph
- ✓ Formulated feeds should have a relative high protein content of 530-580 g /kg and medium lipid content 170 g/kg
- ✓ Vitamin and mineral requirements may differ from marine fishes
- ✓ High requirement of phospholipids,- vegetable / marine origin?
- ✓ Fatty acid requirements: Pike perch larvae are stress sensitive to lack of HUFAs causing neural deficiencies

What did we test?



Faculty of Sciences and Technologies

Nancy, France 27.
June



1. Influence of levels of phospholipids and EFA (essential fatty acids) in formulated diets on growth performances; stress sensitivity. gut maturation; liver function

2. Importance and the interaction of dietary levels of EFA, - vitamins (A,C, D, E) - and minerals (CA, P)

3. Influence of salinity on larval ability to utilize and metabolize EFA and physiological effects

Faculty of Sciences and Technologies

Nancy, France 27.
June



# What are oils, lipids and FA



The nutritionally important lipids are fats (solid) and oils (liquids) that consist of fatty acids with 12- 20 carbons. Most of the lipid found in food is in the form of triglycerides

Two major lipid groups:

Triacylglycerols (TAG, storage fat) & phospholipids (PL, membrane fat)

$$\begin{array}{c} \text{CH}_2\text{-OH} \ + R_1 \\ | \\ \text{CH-OH} \ + R_2 \\ | \\ \text{CH}_2\text{-OH} \ + R3 + -P = \text{OH} \end{array}$$

Figure 1b. Structures of Fatty Acids

$$H_3$$
C  $\frac{18}{17}$   $\frac{16}{14}$   $\frac{13}{12}$   $\frac{12}{11}$   $\frac{10}{19}$   $\frac{9}{8}$   $\frac{7}{8}$   $\frac{3}{4}$   $\frac{1}{2}$  COOH omega end 3 double bonds carboxyl end

The chemical structure of  $\alpha$ -linolenic acid (ALA), 18:3n-3. ALA has 18 carbon atoms (C) and 3 double bonds, the first of which is located 3 carbon atoms from the terminal methyl group (omega  $[\omega]$  end).

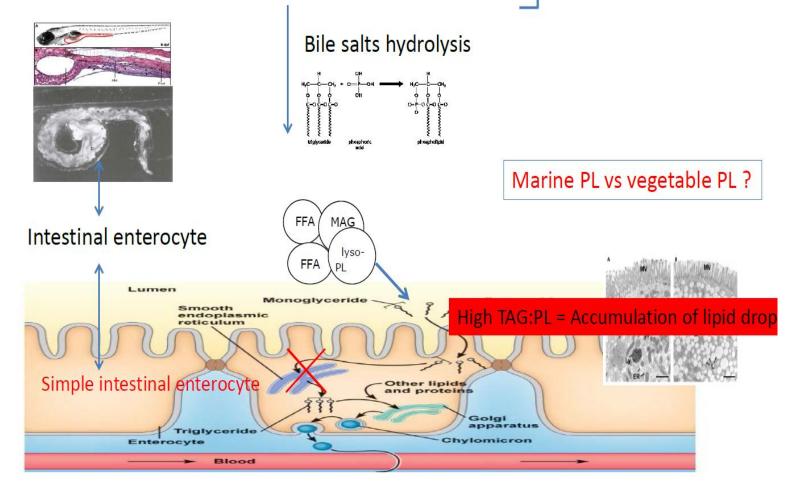
Glycerophospholipid = Glycerol + fatty acid + polar phosphorous moity

Faculty of Sciences and Technologies

Nancy, France 27.
June



# Dietary uptake of TAG and PL


Natural intact phospholipids

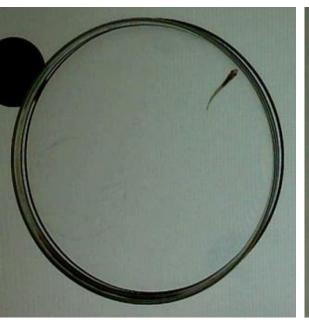


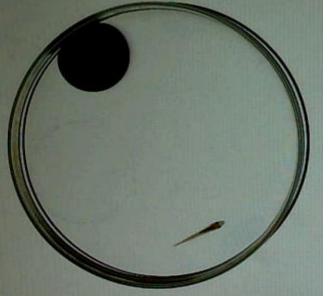
VS

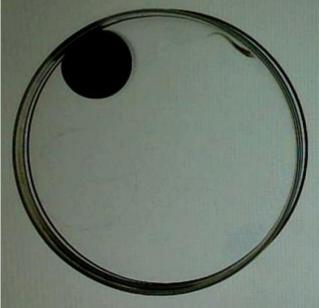


Supplemented lipids TAG or PL




# **Previous studies**




Experiments shave shown both short and long term consequences by lack of HUFAs on neural development and stress sensitivity

Behavioural influence by lack of HUFAs in absence and presence of a simulated predator







What did we test?



Faculty of Sciences and Technologies

Nancy, France 27.
June



1. Influence of levels of phospholipids and EFA (essential fatty acids) on growth performances; stress sensitivity. gut maturation; liver function

2. Importance and the interaction of dietary levels of EFA, - vitamins (A,C, D, E) - and minerals (CA, P)

3. Influence of salinity on larval ability to utilize and metabolize EFA and physiological effects

# Levels of phospholipids and influence of supplemented HUFA

DTU

Faculty of Sciences and Technologies

Nancy, France 27.
June

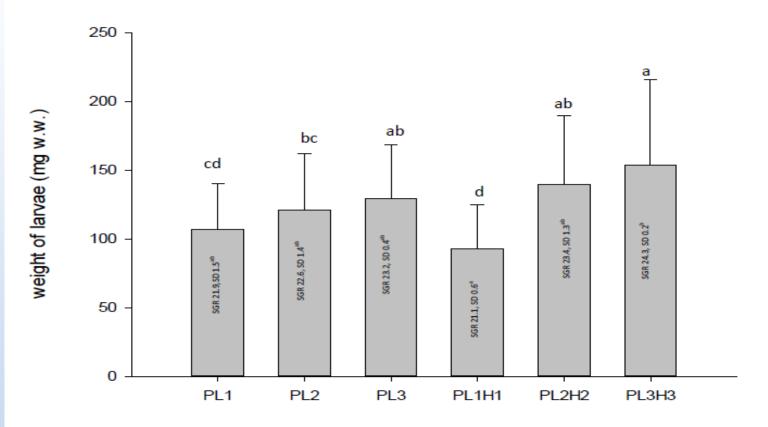


| Analysed content (% DM) | PL1  | PL2  | PL3  | PL1H1 | PL1H2     | PL1H3 |
|-------------------------|------|------|------|-------|-----------|-------|
|                         |      |      |      |       |           |       |
| Crude protein           | 52,5 | 51,7 | 52,0 | 51,8  | 52,4      | 52,1  |
| Crude lipid             | 27,0 | 27,0 | 27,0 | 27,0  | 26,9      | 27,0  |
| Gross Energy            | 24,0 | 23,3 | 22,5 | 24,0  | 23,3      | 22,5  |
|                         |      |      |      | Alg   | atrium DH | A70   |
| EPA (% ww, as fed)      | 0,41 | 0,41 | 0,41 | 0,47  | 0,61      | 0,75  |
| DHA (% ww, as fed)      | 0,66 | 0,66 | 0,66 | 1,04  | 2,06      | 3,04  |
|                         |      |      |      |       |           |       |
| TPL (PC, PE, PI) (%)    | 3,7  | 8,2  | 14,4 | 3,7   | 8,3       | 14,5  |

#### **Experimental prerequisites:**

Triplicate test. Use of vegetable oil Exp. Duration 10 -30 DPH

- 3 dietary levels of phospholipids (i.e. soy bean lecithin)
- + additional 3 levels of EPA+DHA (Algatrium DHA, TAG)


Faculty of Sciences and Technologies

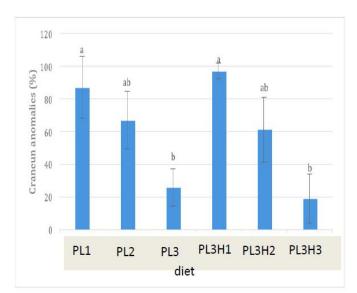
Nancy, France 27.
June

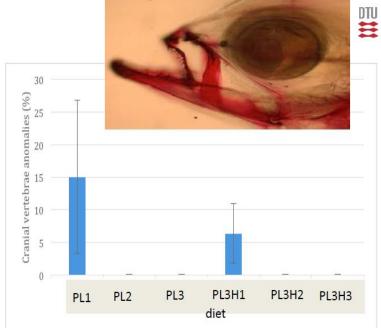


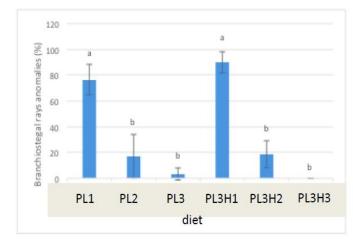
# Levels of phospholipids and influence of supplemented HUFAs : **Growth Results**

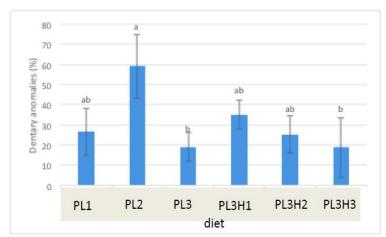





# Levels of phospholipids and influence of supplemented HUFAs


Faculty of Sciences and Technologies


Nancy, France 27.
June



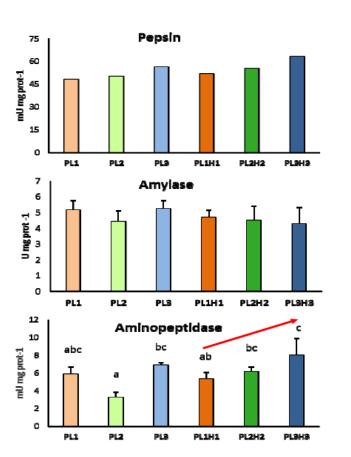

# **Larval anomalies**

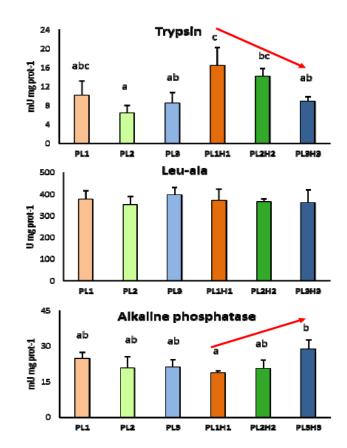









# Levels of phospholipids and influence of supplemented HUFAs: 🚆 **Enzymatic activity**


Faculty of Sciences and Technologies

Nancy, France 27. June

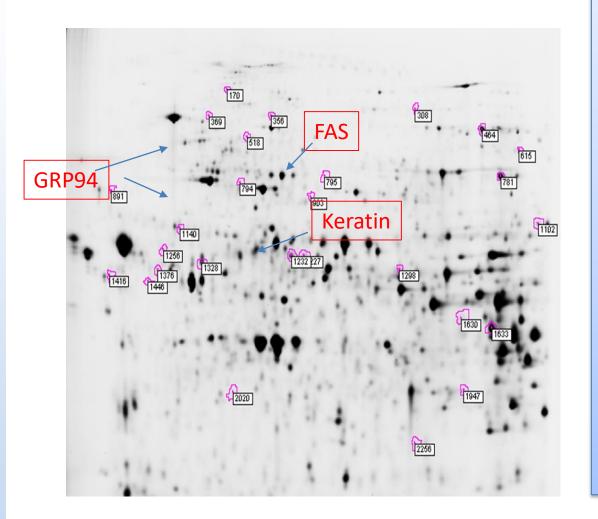
- Increased PL and n-3 LC-PUFA enhanced the activities of the brush border membrane enzymes, alkaline phosphatase and aminopeptidase. This enhanced enzymatic activity is associated to a higher maturation of the gut followed by growth improvement







Faculty of Sciences and Technologies


Nancy, France 27.

June



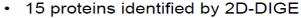
# Levels of phospholipids and influence of supplemented HUFAs: **Proteomics**





# Differential pattern proteins involved in:

- ✓ Lipid metabolism
- ✓ Protein synthesis
- ✓ Endoplasmic reticulum(ER) stress
- ✓ Cytoskeletal and structural protein


Faculty of Sciences and Technologies

Nancy, France 27.
June



# Levels of phospholipids and influence of supplemented HUFAs:

#### **Proteomics**



8 proteins differentially expressed between treatments (P<0.05)</li>

|              | -                                            |                                                                                                                                |                |                                                                                               |
|--------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------|
| Spot         | accession                                    | Protein identification                                                                                                         | р              | Fold change                                                                                   |
| 794          | A0A0F8AHC2                                   | Glucose-regulated                                                                                                              | 0.007          | 1.70 in PL2/PL3H3                                                                             |
| 518          | A0A0F8AWU1                                   | Glucose-regulated protein (GRP94)                                                                                              | 0.031          | 1.48 in PL2/PL1H1                                                                             |
|              | UPI000557CE3B                                | Glucose-regulated protein (GRP94)                                                                                              |                | 1.52 in PL2/PL3H3                                                                             |
| 795          | UPI000556131D                                | fatty acid synthase-like                                                                                                       |                | 4.36 in PL1 vs PL3H3<br>3.65 in PL2 vs PL3H3<br>3.54 in PL3 vs PL3H3<br>3.50 in PL1H1/PL3H3   |
| 1102         | G3P216                                       | ATP-citrate synthase                                                                                                           | 0.036          | 2.60 in PL2/PL3H3                                                                             |
| 1633         | H2U634                                       | non-specific lipid-transfer protein                                                                                            |                | 2.03 in PL1H1 vs PL3H3                                                                        |
|              | H2SWA2                                       | hydroxysteroid dehydrogenase-like protein 2                                                                                    |                |                                                                                               |
| 1232         | G8G8Y1                                       | Keratin 8 (Fragment) n=2                                                                                                       | 0.035          | 2.27 in PL1/PL2H2                                                                             |
|              | G3NI19                                       | keratin, type II cytoskeletal 8-like                                                                                           |                | 2.33 in PL1/PL3H3                                                                             |
| 1376         | UPI00054B498F                                | protein disulfide-isomerase                                                                                                    | 0.047          | NS                                                                                            |
| 1947         | U3LRB6                                       | Protein disulfide-isomerase                                                                                                    | 0.005          | 1.85 in PL1/PL2<br>1.99 in PL1/PL2H2<br>1.67 in PL2/PL1H1                                     |
| Spot         | accession                                    | Protein identification                                                                                                         | р              | Fold change                                                                                   |
| 794          | A0A0F8AHC2                                   | Glucose-regulated /                                                                                                            | 0.007          | 1.70 in PL2 vs PL3H3                                                                          |
| 518          | A0A0F8AWU1 Glucose-regulated protein (GRP94) |                                                                                                                                | 0.031          | 1.48 in PL2 vs PL1H1                                                                          |
|              | UPI000557CE3B                                | Glucose-regulated protein (GRP94)                                                                                              |                | 1.52 in PL2 vs PL3H3                                                                          |
| 795          | UPI000556131D                                | fatty acid synthase-like                                                                                                       | 0.002          | 4.36 in PL1/PL3H3                                                                             |
|              |                                              |                                                                                                                                | 0.002          | 3.65 in PL2/PL3H3<br>3.54 in PL3/PL3H3<br>3.50 in PL1H1/PL3H3                                 |
| 1102         | G3P216                                       | ATP-citrate synthase                                                                                                           | 0.036          | 3.65 in PL2/PL3H3<br>3.54 in PL3/PL3H3                                                        |
| 1102<br>1633 | G3P216<br>H2U634                             | , ,                                                                                                                            |                | 3.65 in PL2/PL3H3<br>3.54 in PL3/PL3H3<br>3.50 in PL1H1/PL3H3                                 |
|              |                                              | ATP-citrate synthase                                                                                                           | 0.036          | 3.65 in PL2/PL3H3<br>3.54 in PL3/PL3H3<br>3.50 in PL1H1/PL3H3<br>2.60 in PL2/PL3H3            |
|              | H2U634                                       | ATP-citrate synthase non-specific lipid-transfer protein                                                                       | 0.036          | 3.65 in PL2/PL3H3 3.54 in PL3/PL3H3 3.50 in PL1H1/PL3H3 2.60 in PL2/PL3H3 2.03 in PL1H1/PL3H3 |
| 1633         | H2U634<br>H2SWA2                             | ATP-citrate synthase non-specific lipid-transfer protein hydroxysteroid dehydrogenase-like protein 2                           | 0.036<br>0.042 | 3.65 in PL2/PL3H3 3.54 in PL3/PL3H3 3.50 in PL1H1/PL3H3 2.60 in PL2/PL3H3 2.03 in PL1H1/PL3H3 |
| 1633         | H2U634<br>H2SWA2<br>G8G8Y1                   | ATP-citrate synthase non-specific lipid-transfer protein hydroxysteroid dehydrogenase-like protein 2  Keratin 8 (Fragment) n=2 | 0.036<br>0.042 | 3.65 in PL2/PL3H3 3.54 in PL3/PL3H3 3.50 in PL1H1/PL3H3 2.60 in PL2/PL3H3 2.03 in PL1H1/PL3H3 |

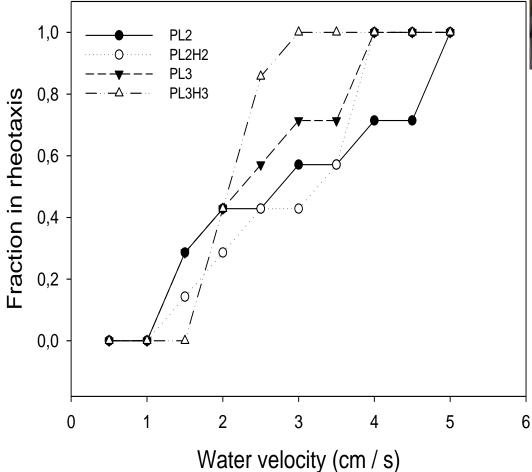


FAS expression was down regulated in larvae fed PL3H3

FAS seemed to be more regulated by LC-PUFA content than by PL levels

Downregulation of
the expression
of proteins
involved in
transfer and
exchange of
phospholipids
and cholesterol

Faculty of Sciences and Technologies


Nancy, France 27.
June



# Levels of phospholipids and influence of supplemented HUFAs:



# **Rheotaxis**





### What did we test?



Faculty of Sciences and Technologies

Nancy, France 27.
June



1. Influence of levels of phospholipids and EFA (essential fatty acids) on growth performances; stress sensitivity. gut maturation; liver function

2. Importance and the interaction of dietary levels of EFA, - vitamins (A,C, D, E) - and minerals (CA, P)

3. Influence of salinity on larval ability to utilize and metabolize EFA and physiological effects

Faculty of Sciences and Technologies

Nancy, France 27.

June



# Search of key nutritional factors in pikeperch larvae



**Objective:** Screening of selected nutrients (fatty acids, vitamins and minerals) for development of specific formulated diets for pikeperch larvae

8 nutritional variables

2 modalities: high and low dietary levels



8 factors \* 2 modalities/factors

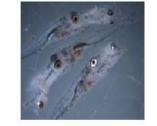
 $2^8 = 256$  combinations



16 different combinations

| Dietary   | Low level  | High level  |  |  |
|-----------|------------|-------------|--|--|
| variables |            |             |  |  |
| Ca/P      | 0.6        | 1.2         |  |  |
| DHA+EPA   | 1.25%      | 3.5%        |  |  |
| ARA       | 0.8%       | 1.6%        |  |  |
| Vitamin E | 1000 mg/kg | 3000 mg/kg  |  |  |
| Vitamin C | 2000 mg/kg | 3600 mg/kg  |  |  |
| Vitamin A | 8000 IU/kg | 30000 IU/kg |  |  |
| Vitamin D | 2800 IU/kg | 28000 IU/kg |  |  |
| Se        | 3 mg/kg    | 12 mg/kg    |  |  |

DTU


Faculty of Sciences and Technologies

Nancy, France 27.
June



# **Experiment timeline**

- 1st feeding with Artemia nauplii (enriched with HUFA)
- Co-feeding period from 18 to 24 dph using Artemia and mixture of the 16 diets





D<sub>-24</sub>

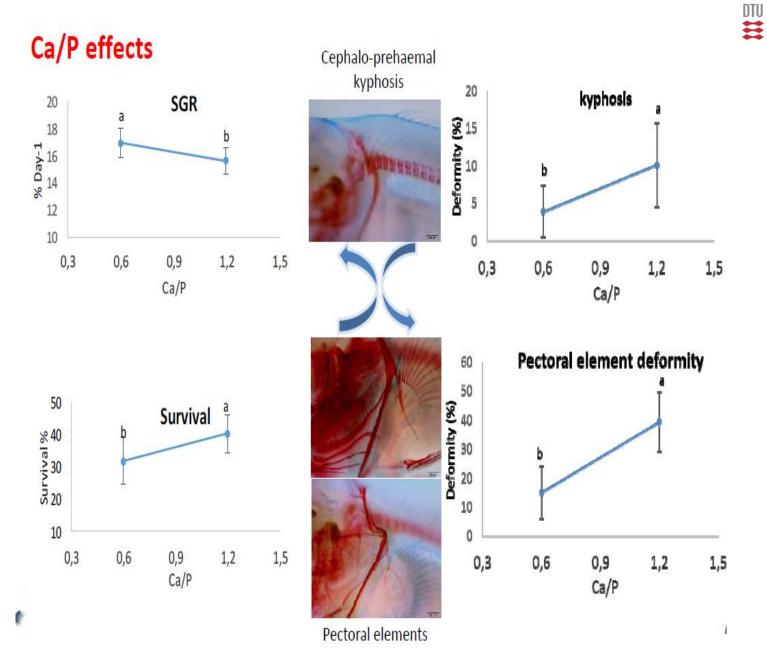
1

Daily mortality counting



Initial sampling

25 dph larvae (9.44 mg) randomly distributed at a density of 770 larvae tank-1


- Growth and survival
- · Biochemical composition
- Digestive enzymatic assays
- Deformities evaluation
- Histology
- Gene expression

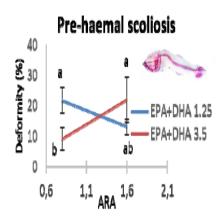


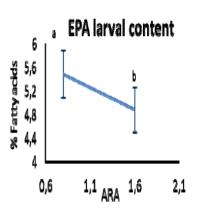
Experimental set up at UNAMUR 16 independent 100L-aquariums

Faculty of Sciences and Technologies



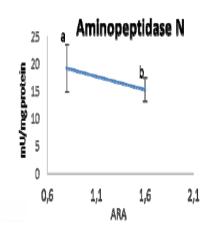



Faculty of Sciences and Technologies


Nancy, France 27. June












DTU

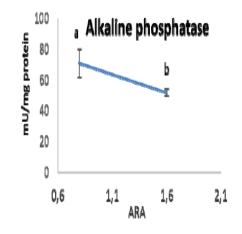
✓ ARA: potential involvement in the regulation of digestive tract development

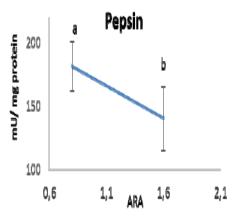


Lordosis

1,1

1,6


70


60

30

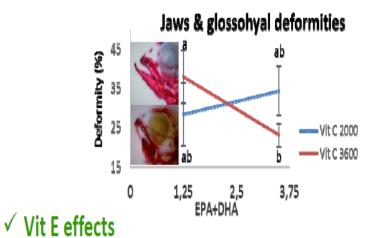
0,6

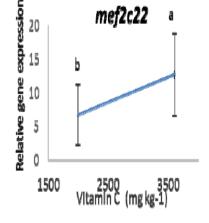
Deformity (%)

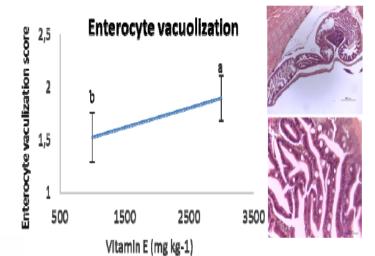


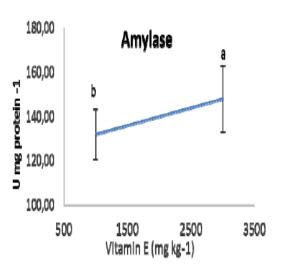


Vitamin effects and interactions


., DTI


Faculty of Sciences and Technologies


Nancy, France 27.
June




✓ Vit C effects on ossification of cartilaginous-origin bone process and its function as antioxidant









**CA/P Confirmatory exp.** 

DTU

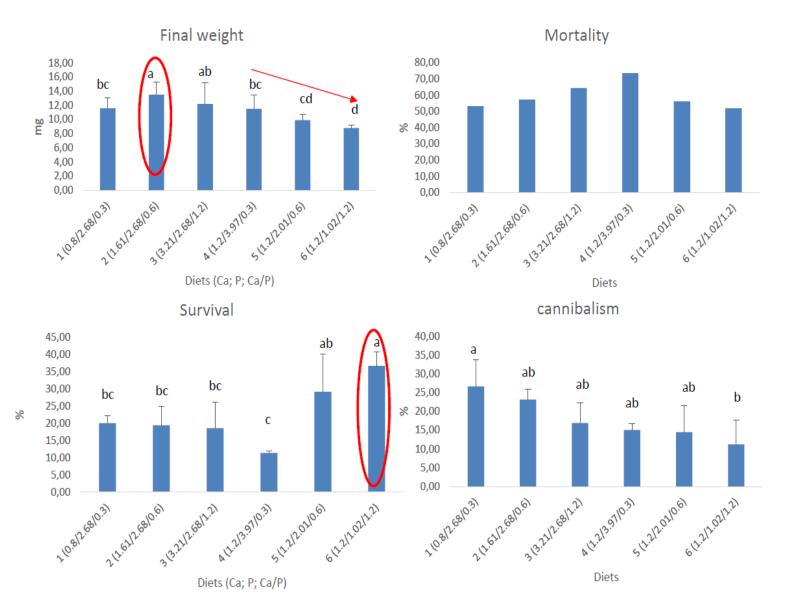
Faculty of Sciences and Technologies

Nancy, France 27.
June



The experiment investigated dietary Ca/P effect not only by varying one of the two minerals, but also varying both.

| As fed basis  | Diet 1 | Diet 2 | Diet 3 | Diet 4 | Diet 5 | Diet 6 |
|---------------|--------|--------|--------|--------|--------|--------|
| Crude protein | 51.16  | 51.15  | 51.14  | 51.14  | 51.16  | 51.17  |
| Crude fat     | 18.46  | 18.46  | 18.46  | 18.46  | 18.46  | 18.46  |
| Fiber         | 0.16   | 0.16   | 0.16   | 0.16   | 0.16   | 0.16   |
| Starch        | 9.97   | 8.02   | 4.20   | 4.21   | 11.48  | 15.17  |
| Ash           | 9.04   | 10.96  | 14.72  | 12.95  | 8.46   | 6.18   |
| Total P       | 2.68   | 2.68   | 2.68   | 3.97   | 2.01   | 1.01   |
| Ca            | 0.80   | 1.61   | 3.21   | 1.20   | 1.20   | 1.20   |
| Ca/P          | 0.30   | 0.60   | 1.20   | 0.30   | 0.60   | 1.19   |


Faculty of Sciences and Technologies

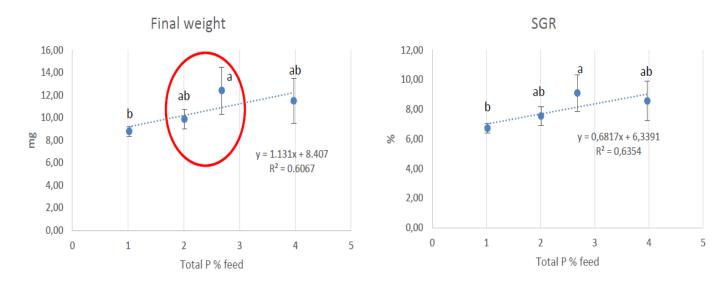
Nancy, France 27.
June

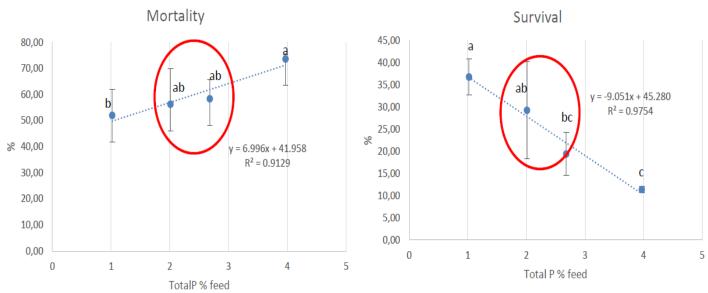


### Results






Faculty of Sciences and Technologies


Nancy, France 27.
June



# **Results**







What did we test?



Faculty of Sciences and Technologies

Nancy, France 27.

June



1. Influence of levels of phospholipids and EFA (essential fatty acids) on growth performances; stress sensitivity. gut maturation; liver function

2. Importance and the interaction of dietary levels of EFA,- vitamins (A,C, D, E) - and minerals (CA, P)

Influence of salinity on larval ability to utilize and metabolize EFA and physiological effects

Faculty of Sciences and Technologies

Nancy, France 27.

June



# Larval FA metabolism by rearing in low salinity gradients?





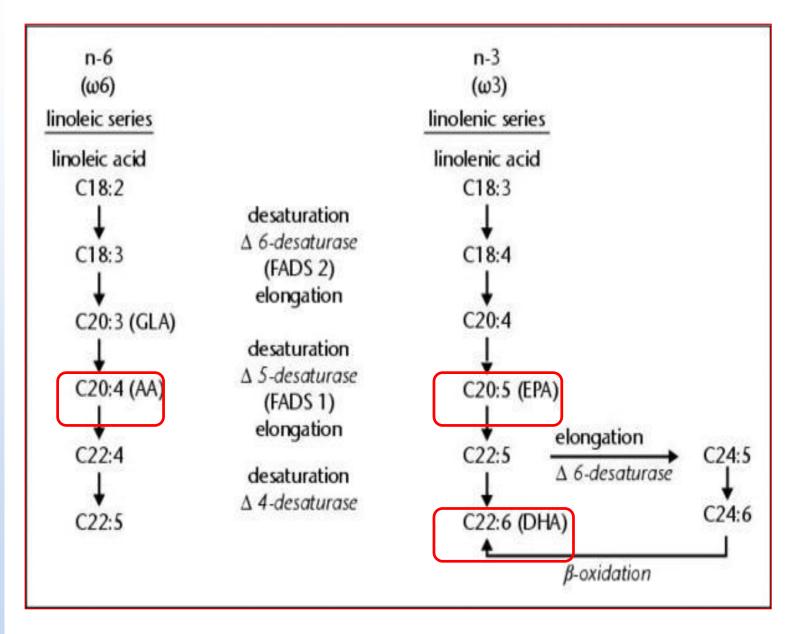
### **Experimental design:**

Two factors tested in 18 tanks from 10 DPH:

- High dietary ALA (18:3n-3) &. high LA (18:2n-6)
- Three salinity levels (0-, 5-, 11 ppt)
- In vivo incubation of larvae with labelled <sup>14</sup>C fatty acids (ALA, LA, EPA, DHA) (0, 5, 10 %)

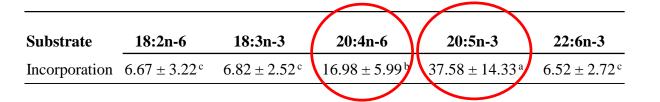
### **Analyses:**

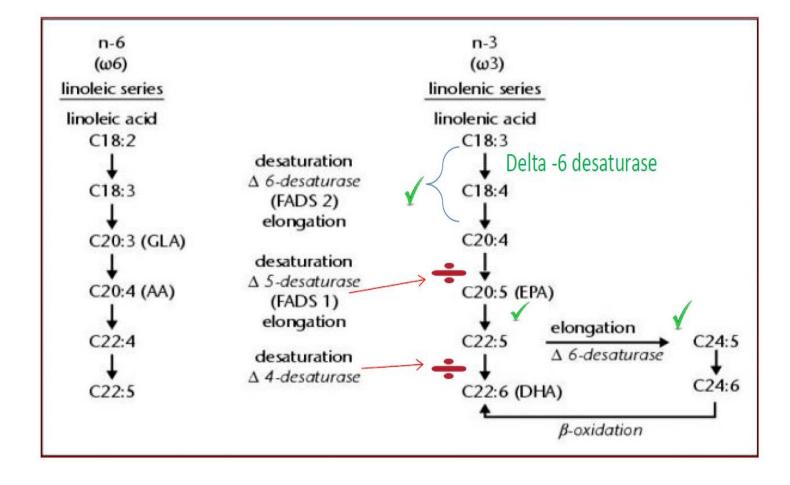
- Metabolism of lipid classes, esterification (HPTLC, TLC)
- Lipid class composition and FA content,
- Performance
- Eicosanoid activity
- Deformities, stress resistance




# FA elongation and desaturation capability

DTU


Faculty of Sciences and Technologies

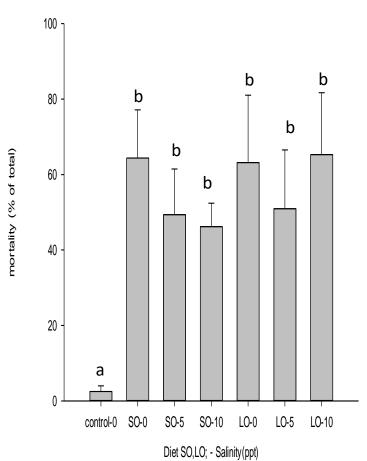





Faculty of Sciences and Technologies








# **Confinement stress and mortality**



Faculty of Sciences and Technologies









# Commercial test: Validation of optimised exp. diet



Faculty of Sciences and Technologies

Nancy, France 27.

June



 We compared the efficiency of « exp. Diversify optimised diet » vs commercial diet (Otohime).
 Test: Fish2Be facilities

- 3 weeks of feeding trial
- Endpoints: Survival & cannibalism, growth & size heterogeneity







Faculty of Sciences and Technologies

Nancy, France 27.
June

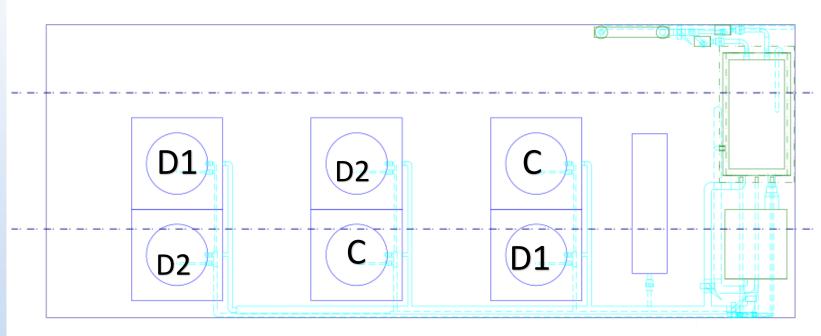


# Validation **Preliminary results:**



| Dietary             |           |           |
|---------------------|-----------|-----------|
| composition %       | <b>D1</b> | <b>D2</b> |
|                     |           |           |
| Crude protein       | 53.6      | 53.6      |
| Crude fat           | 24.1      | 24.1      |
| Fiber               | 0.1       | 0.2       |
| Ash                 | 10.5      | 9.3       |
| Gross Energy. MJ/kg | 23.0      | 23.1      |
| P                   | 2.4       | 2.4       |
| Ca                  | 1.9       | 1.9       |
| Ca/P                | 0.8       | 0.8       |
| ARA                 | 0.5       | 0.5       |
| EPA                 | 0.5       | 2.0       |
| DHA                 | 1.0       | 4.5       |
| Total PL            | 8.6       | 8.6       |




# **Experimental setup**



Faculty of Sciences and Technologies







Faculty of Sciences and Technologies

Nancy, France 27.
June



# Setup



- 6 hatchery tanks, w automatic cleaning arm
- 6\*35000 weaned larvae (25day old)
- Fed continuously with beltfeeders (12 hours/day)
- For around 40 days 26/04 05/6 or until some major concerns
- Cannibals were thrown out every 4 -6 days



Faculty of Sciences and Technologies

Nancy, France 27.

June



# **Preliminary results**





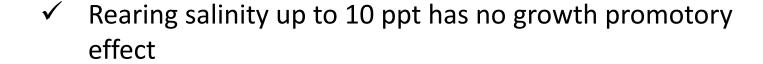
- After a week major mortalities occurred in the groups fed D2
  - Larvae were floating on the surface with air in the stomach/intestine
  - effect was so severe that even after stopping with D2 it continued for days.
- D1 had slightly lower survival to the commercial diet (35% <> 45%)
- Deformaties were low (<5%) in both D1 and C</li>
  - however in D1 was nearly all related to not inflating swimbladder
  - In C it there was some other deformaties as well
- No growth results yet

Faculty of Sciences and Technologies

Nancy, France 27.
June



### Main conclusions and recommendations




- √ 8.2 % PL + supplementation with 1 % d.w. DHA and 0.17% d.w.
  EPA promote growth and digestive enzymatic activity, and reduce
  deformities and cellular stress.
- ✓ No effect on stress markers, escape response or metabolic respiration for larvae fed diets with ≥ 8 % phospholipids with or without n-3 HUFA supplementation
- ✓ Essential fatty acids (EFA) can be supplemented as TAG
- ✓ Several important enzyme proteins are affected by PL level and EFA level.
- ✓ Low Ca/P ratio induces similar effects as for high PL + EFA levels. P levels should also be considered
- ✓ Nutritional requirements must consider interactions between nutrients especially HUFA ratio (ARA/EPA/DHA and vitamin C and E (antioxidant effect).

# **Main Conclusions and recommendations**



Faculty of Sciences and Technologies





- ✓ Salinity has no effect on the enzymatic capability of larvae to elongate shorter chain FA and thus biosynthesize lipid classes containing LC PUFAs /EFAs
- ✓ DHA (+ EPA) <u>must be</u> supplied in diets of pikeperch larvae for normal development and to reduce stress sensitivity

Faculty of Sciences and Technologies

Nancy, France 27.
June





The presented work received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration (KBBE-2013-07 single stage, GA 603121, DIVERSIFY)



Thanks for your attention