

Wreckfish broodstock nutrition

Partners involved:

- CM: CIMA and IGAFA
- ✓ IEO (Oceanographic Center of Vigo)
- ✓ FCPCT (Las Palmas of Gran Canarias)

Fátima Linares

Centro de Investigacións Mariñas.

Consellería do Mar. Xunta de Galicia.

July 2018

Objective and Tasks

Determine the influence of broodstock feeds on fecundity and spawning quality

The study includes:


- ✓ A preliminary study about biochemical composition of some tissues of wild wreckfish and a comparison with the biochemical composition of tissues of intensive reared wreckfish
- ✓ The biochemical composition of different broodstock feeds
 with special attention to the fatty acid contents
- ✓ The effect of different feeding regimes based on fresh and commercial dry feeds on oocytes and eggs fatty acid composition
- ✓ The effect of feeding regime on fecundity and egg and sperm quality

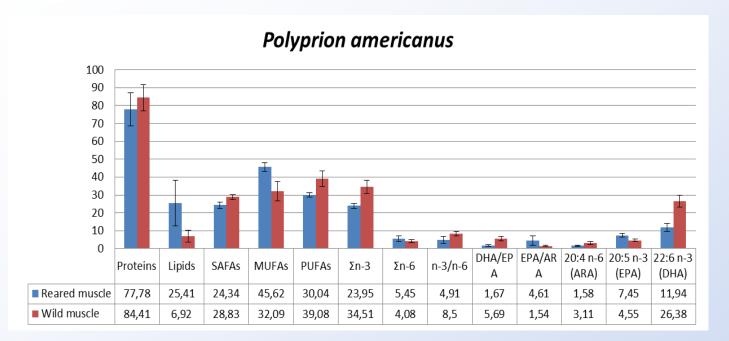
Preliminary study: Composition of wild wreckfish tissues and a comparison with tissues of intensive reared wreckfish

Sampling: 91 fish were sampled from the Azores from February 2014 to April 2015

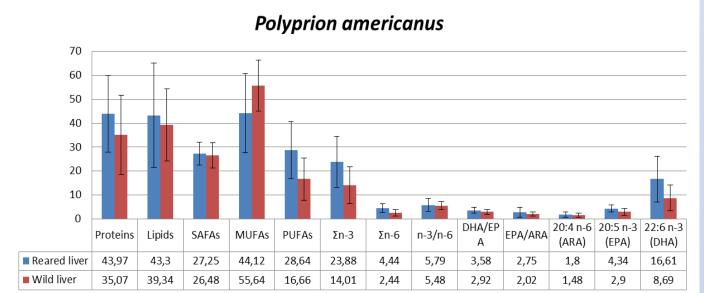
Objectives:

- To get some basic information about this species
- To advance in the knowledge of wreckfish nutritional requirements
- To identify potential nutritional deficiencies
- To formulate suitable diets for wreckfish broodstock

Biochemical composition of wild wreckfish tissues


	Muscle	Liver		
Proximate analysis (% dry matter)				
Proteins	84.41±7.34	38.16±12.89		
Lipids	6.92±3.39	39.34±15.03		
Fat	ty acids content (% total fatt	y acids)		
SAFAs	28.83±1.28	26.48±5.21		
MUFAs	32.09±5.43	55.64±10.72		
PUFAs	39.08±4.41	16.66±8.88		
Σn-3	34.51±3.75	14.01±7.69		
Σn-6	4.08±0.81	2.44±1.29		
n-3/n-6	8.50±1.18	5.48±1.75		
20:4 n-6 (ARA)	3.11±0.79	1.48±0.92		
20:5 n-3 (EPA)	4.55±0.70	2.90±1.54		
22:6 n-3 (DHA)	26.38±3.33	8.69±5.37		
DHA/EPA	5.69±1.23	2.92±0.96		
EPA/ARA	1.54±0.37	2.02±0.75		

PUFA.polyunsaturated fatty acids; ARA. arachidonic acid; DHA.docohexaenoic acid; EPA.eicosapentaenoic acid

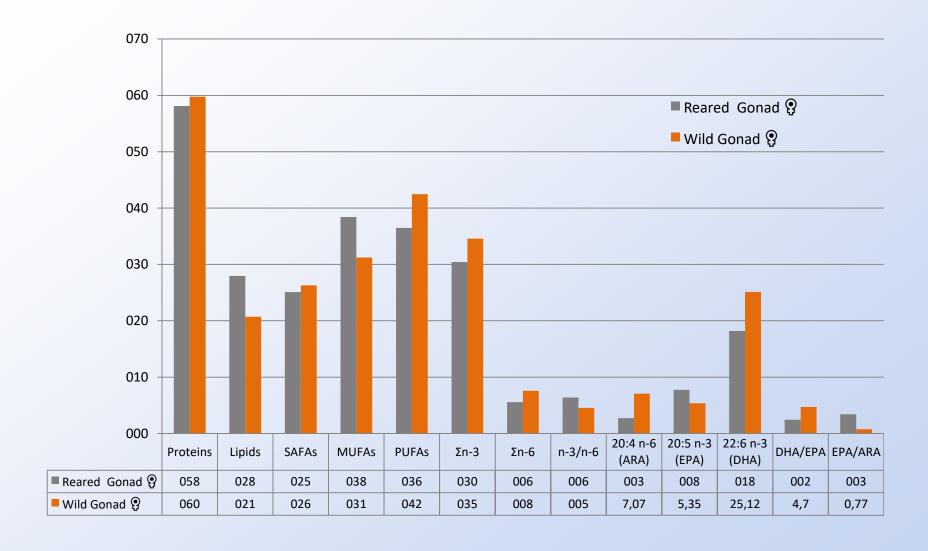


Biochemical composition: wild and reared wreckfish

Muscle

Liver

Biochemical composition of wild wreckfish mature gonads


	Wild 🏻 Gonad	Wild © Gonad	
P	roximate analysis (% dry m	atter)	
Proteins	59.77±10.50	44.02±3.77	
Lipids	20.73±4.78	13.21±3.08	
Fatty acids content (% total fatty acids)			
SAFAs	26.30±2.96	29.24±0.36	
MUFAs	31.23±11.69	19.37±3.87	
PUFAs	42.47±9.72	51.39±3.60	
Σn-3	34.57±8.88	39.88±4.95	
Σn-6	7.57±1.16	10.69±1.15	
n-3/n-6	4.54±0.84	3.81±0.87	
20:4 n-6 (ARA)	7.07±1.40	10.10±1.10	
20:5 n-3 (EPA)	5.35±1.53	5.35±0.07	
22:6 n-3 (DHA)	25.12±7.36	31.40±4.91	
DHA/EPA	4.70±0.25	5.87±0.94	
EPA/ARA	0.77±0.22	0.54±0.06	

Females mature gonads Wild & Reared wreckfish

Feeding regimes for wreckfish broodstock

Ingredients	Dry food %
Fishmeal 70 LT FF Skagen	25.000
CPSP 90	10.000
Squid meal	34.200
Krill meal (Aker Biomarine)	7.500
Wheat Gluten	7.000
Wheat Meal	7.250
Tuna oil	1.000
Algatrium 70% DHA	0.200
Incromega DHA 500TG	1.000
VEVODAR	1.300
Vit & Min Premix PV01	2.000
Lutavit E50	0.050
Soy lecithin - Powder	1.500
Macroalgae mix	1.000
Antioxidant powder (Paramega)	0.200
Antioxidant liquid (Naturax)	0.200
SelPlex - Se yeast	0.020
Carophyll Pink 10% - astaxanthin	0.050
Nucleotides (Nucleoforce)	0.030
L – Taurine	0.500
Total	100.000

Diets used for wreckfish broodstocks feeding				
	2016	2017		
Stock IEO Tank S1 n = 5	Semi-moist diet	Semi-moist diet		
Stock IEO Tank S2 n = 6	Dry food	Dry food		
Stock IGAFA n = 10	Sauid	Hake/Squid		

Semimoist diet:

- 14.8% blue fish
- 14.8% white fish
- o 18% mussel
- o 17.6% squid
- 34.8% fishmeal

Protein and lipid composition (% dry weight) of broodstock wreckfish diets

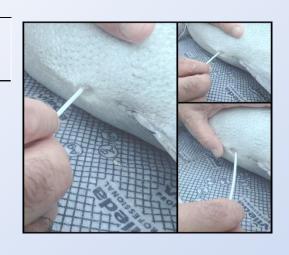
Diets	Proteins	Lipids
Semi-moist diet	64.66	17.35 ± 2.45
Dry food	68.2	12.50 ± 0.53
Hake	82.5 ± 4.65	5.54 ± 0.46
Squid	57.54 ± 1.66	10.79 ± 0.38
Hake/Squid	62.93 ± 4.23	7.89 ± 4.23

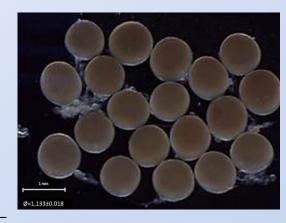
High level of proteins in diets specially in Dry food (68%) Hake/Squid has the lowest level of lipids (8%) and Dry food has 12.5% of lipids and Semi-moist diet 17%

Fatty acid composition of diets (% total fatty acids)

	Semi-moist diet	Dry food	Hake/Squid
SAFA's	29.96 ± 01.19	27.1 ± 0.21	29.92 ± 0.43
MUFA's	31.55 ± 0.97	26.01 ± 0.11	15.25 ± 0.78
PUFA'S	38.49 ± 1.65	46.89 ± 0.1	54.83 ± 0.97
Σn-3	29.40 ± 1.57	30.31 ± 0.14	49.44 ± 1.00
Σn-6	8.28 ± 0.56	16.25 ± 0.06	3.58 ± 0.01
n-3/n-6	3.56 ± 0.23	1.87 ± 0.01	13.81 ± 0.31
20:4n-6 (ARA)	1.25 ± 0.28	6.9 ± 0.12	2.73 ± 0.07
20:5n-3 (EPA)	8.84 ± 0.48	8.19 ± 0.11	14.27 ± 0.23
22:5n-3	1.29 ± 0.24	1.01 ± 0.14	0.97± 0.06
22:6n-3 (DHA)	15.91 ± 1.16	17.94 ± 0.05	32.55 ± 1.10
DHA/EPA	1.43 ± 0.66	2.19 ± 0.02	2.28 ± 0.09
EPA/ARA	1.86 ± 0.73	1.19 ± 0.04	5.22 ± 0.17

Hake/Squid has the highest level of PUFA(55%TFA), n-3 represents 49%TFA, EPA 14% & DHA 32%
Dry food has the highest level of n-6 (16%) and ARA (7%)
EPA/ARA is 1 in Dry food similar to tissues of wild wreckfish and 5 in Hake/Squid because of the high EPA content



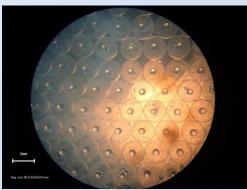


Fatty acids of oocytes (\emptyset >700 μ) from females fed with different diets (% total fatty acids)

Diets	Semi-moist diet	Dry food	Hake/Squid
Oocytes	OSM 0.710-2.033 μ	ODF 0.778-2.118μ	OHS 0.831-1.388μ
SAFA's	22.97 ± 0.57	22.17 ± 2.07	21.22 ± 1.15
MUFA's	33.58 ± 1.10	33.91 ± 4.33	32.35 ±2.89
PUFA's	43.46 ± 1.34	43.92 ± 4.10	46.42 ± 2.29
Σn-3	36.87 ± 1.59ab	31.35 ± 3.31b	41.31 ± 2.15a
Σn-6	6.34 ± 0.84b	12.32 ± 1.21a	4.86 ± 0.50b
n-3/n-6	5.90 ± 0.93b	2.58 ± 0.20c	8.63 ± 0.90a
20:4n-6 (ARA)	1.88 ± 0.36b	6.74 ± 1.25a	1.61± 0.99b
20:5n-3 (EPA)	7.57 ± 0.19b	5.49 ± 0.35c	10.72 ± 1.13a
22:6n-3 (DHA)	24.60 ± 1.53ab	21.32 ± 1.90b	25.48 ±1.16a
DHA/EPA	3.25 ± 0.15b	3.91 ± 0.27a	2.40 ± 0.18c
EPA/ARA	4.16 ± 0.59b	0.86 ± 0.10c	6.71 ± 0.38a

There are not significant differences in SAFAS's, MUFA's and PUFA's of oocytes from females fed with the three diets

The highest content of n-3 was observed in OHS (41%), while OSM had 37% and ODF 31% of total fatty acids n-6 PUFA values are much higher (12%) in ODF than in OHS and OSM (5-6%) EPA/ARA is 0.86 in ODF and much higher in OSM(4) and OHS (7)



Lipid (% dry weight) and fatty acid composition (% total fatty acids) of eggs from females fed with different diets

Semi-moist diet	Dry food	Hake/Squid
OSM	ODF	OHS
24.65 ± 2.14a	18.94 ± 4.55a	9.40 ± 1.27b
$23.35 \pm 0.96a$	$21.83\pm1.29\text{b}$	$21.39 \pm 0.66\text{b}$
$34.93 \pm 1.96a$	$35.10 \pm 3,46a$	$30.11\pm0.76b$
41.72 ± 2.38b	43.07 ± 2.64b	48.50 ± 0.72a
$35.29 \pm 3.16b$	32.48 ± 1.62c	42.64 ± 0.83a
$6.22 \pm 0.93b$	9.79 ± 0.91a	$5.54 \pm 0.10b$
$5.92 \pm 1.76b$	$3.38 \pm 0.39c$	$7.73 \pm 0.31 \text{a}$
$1.46 \pm 0.13b$	5.12 ± 0,47a	$1.41 \pm 0.08b$
$7.21 \pm 0.76 b$	$5.74 \pm 0.39c$	$11.22 \pm 0.10 \text{a}$
$23.76 \pm 2.16b$	$22.73 \pm 1.23b$	$26.17 \pm 0.83a$
$3.30 \pm 0.12 \text{b}$	$\textbf{3.6} \pm \textbf{0.16} \textbf{a}$	$2.33 \pm 0.06 \text{c}$
$4.92 \pm 0.22b$	$1.13 \pm 0.08c$	7.99 ± 0.50a
	OSM 24.65 \pm 2.14a 23.35 \pm 0.96a 34.93 \pm 1.96a 41.72 \pm 2.38b 35.29 \pm 3.16b 6.22 \pm 0.93b 5.92 \pm 1.76b 1.46 \pm 0.13b 7.21 \pm 0.76b 23.76 \pm 2.16b 3.30 \pm 0.12b	OSMODF24.65 \pm 2.14a18.94 \pm 4.55a23.35 \pm 0.96a21.83 \pm 1.29b34.93 \pm 1.96a35.10 \pm 3,46a41.72 \pm 2.38b43.07 \pm 2.64b35.29 \pm 3.16b32.48 \pm 1.62c6.22 \pm 0.93b9.79 \pm 0.91a5.92 \pm 1.76b3.38 \pm 0.39c1.46 \pm 0.13b5.12 \pm 0,47a7.21 \pm 0.76b5.74 \pm 0.39c23.76 \pm 2.16b22.73 \pm 1.23b3.30 \pm 0.12b3.6 \pm 0.16a

The tendency of these results is similar to the one obtained in oocytes from females fed with the same diets

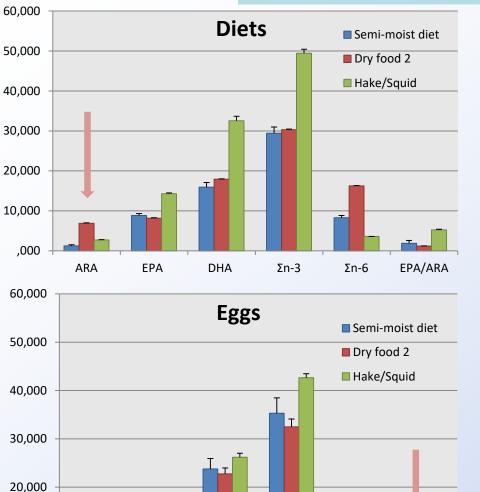
A correlation was found between the fatty acid profile of wreckfish feeding and eggs fatty acid profile

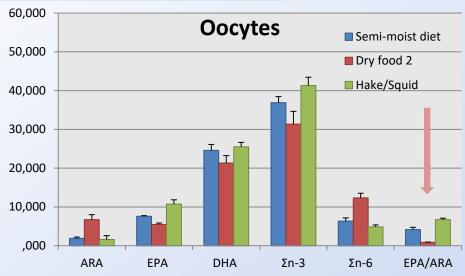
10,000

,000

ARA

EPA


DHA


Σn-3

Fatty acid composition (n-3, n-6, DHA, EPA, ARA & EPA/ARA) of diets, oocytes and eggs

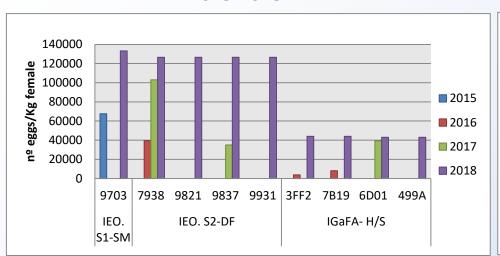
EPA/ARA

Σn-6

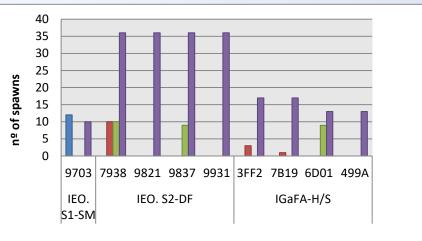
There is a clear relationship between the main fatty acid composition of diets, oocytes and eggs
The ratio of EPA/ARA in oocytes and eggs reflected the diet and was negatively correlated to dietary ARA content

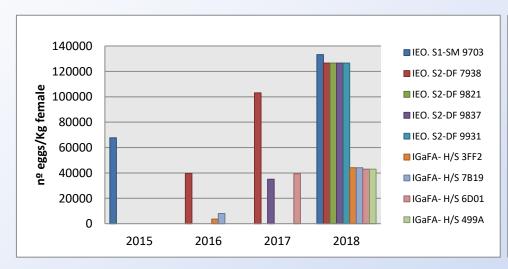
Fatty acid composition (% total fatty acids) of sperm from males from different wreckfish broodstocks

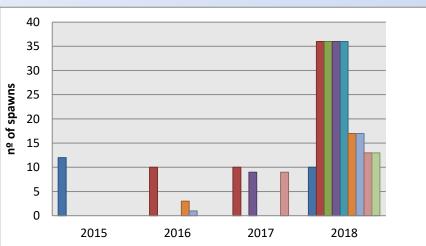
Stocks sperm	Stock IGAFA	Stock IEO	Stock MC2
SAFA's	32.02 ± 1.92	32.56 ± 0.19	31.71 ± 1.96
MUFA's	10.82 ± 1.80	9.35 ± 0.79	9.81 ± 0.35
PUFA's	57.15 ± 0.60	58.10 ± 0.63	56.43 ± 1.93
Σn-3	51.50 ± 0.44	48.92 ± 4.54	49.86 ± 1.49
Σn-6	5.52 ± 0.62b	8.99 ± 3.97a	6.44 ± 0.45b
n-3/n-6	10.15 ± 1.96a	6.22 ± 2.62b	7.85 ± 0.28b
20:4(n-6) ARA	4.94 ± 0.75b	7.84 ± 3.85a	5.91 ± 0.40b
20:5(n-3)EPA	10.81 ± 1.12a	8.78 ± 1.76b	9.91 ± 0.36ª
22:6(n-3)DHA	36.67 ± 1.96	36.89 ± 2.96	36.47 ± 1.74
DHA/EPA	$3.45 \pm 0.53b$	4.37 ± 0.78a	3.71 ± 0.29b
EPA/ARA	2.49 ± 0.70a	1.35 ± 0.69b	1.70 ± 0.16b



There are not significant differences in SAFA's, MUFA's and PUFA's in the sperm of males from the different stocks
The n-3 PUFA content varies between 49-51% of the TFA and the n-6 PUFA content is higher in sperm from IEO stock (9%TFA) than in the rest of stocks




Fecundity of females and diet


Relative fecundity 2015-2018

Spawns **2015-2018**

Relative fecundity and number of spawns per female have been increasing in females fed with dry feed over the years

SUMMARY

- ✓ Wreckfish has a big amount of proteins in muscle, 84% in wild fish and 78% in captive-reared fish
- ✓ Wild wreckfish have less lipids in muscle and liver than in muscle and liver from intensive culture and some differences were observed in the fatty acid profile between wild and reared wreckfish, PUFA and n-3 (%TFA) are higher in wild than in reared fish
- ✓ Gonads from females of wild wreckfish have a high level of ARA (7-10 %TFA) and EPA/ARA nearly 1
- ✓ A clear relationship between fatty acid profile of broodstock diet (semi-moisture, dry food and a mixture of hake and squid) and fatty acid profile of oocytes and eggs from females fed with these different diets was found
- ✓ Results obtained with dry food demonstrated that the wreckfish diet must contain a big amount of proteins, low level of lipids, a high amount of n-3 PUFA and the EPA/ARA ratio must be similar to the one obtained in wild females tissues
- ✓ First data of fatty acid profile of sperm from wreckfish males of different broodstock were obtained
- ✓ Relative fecundity (nº of eggs/Kg of female) and number of spawns per female have been increasing in females fed with dry feed over the years, from 2015 to 2018

Thanks for your attention!!!!

